scholarly journals Gossypium Herbaceum Ghcyp1 Regulates Water-Use Efficiency and Drought Tolerance by Modulating Stomatal Activity and Photosynthesis in Transgenic Tobacco

2017 ◽  
Vol 14 (3) ◽  
pp. 869-880 ◽  
Author(s):  
Alok Ranjan ◽  
Kumari Archana ◽  
Sanjay Ranjan

ABSTRACT: The cyclophilins genes are induced by abiotic stresses, yet their detailed function in drought and salinity remain largely unclear and need to be elaborately validated.Expression of cyclophilin was drastically induced under droughtconditions in Gossypiumherbaceum L. suggesting its stress-responsive function. In an attempt to characterize the role of G.herbacuemcyclophilingene GhCYP1, we overexpressed the GhCYP1 in tobaccousing Agrobacteriummediated transformationand explored its possible involvement in drought and salt stress tolerance.The transgenic plantsover expressing GhCYP1 exhibited tolerance against drought stress as evidenced by leaf disc assay, estimation of chlorophylland proline content along with various physiological parameters such as stomatal conductance, rate of photosynthesis and water use efficiency.The drought stressed transgenic tobaccoplants exhibited higher proline content in leaf ( 1.84 µ mol-g fw) and root (2.02µ mol-g fw ),while a reverse trend was observed in the drought stressed wild type plants, implicating the involvement of GhCYP1 in the maintenance of physiological homeostasis. Thedetail physiological, biochemical and molecular analysis results demonstrate the implicit role of GhCYP1 in conferring multiple abiotic stress tolerance at whole-plant level.

2018 ◽  
Vol 13 (4) ◽  
pp. 045004 ◽  
Author(s):  
D Salazar-Tortosa ◽  
J Castro ◽  
R Rubio de Casas ◽  
B Viñegla ◽  
E P Sánchez-Cañete ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 332 ◽  
Author(s):  
Aurélia Lornac ◽  
Marien Havé ◽  
Fabien Chardon ◽  
Fabienne Soulay ◽  
Gilles Clément ◽  
...  

Sulphur deficiency in crops became an agricultural concern several decades ago, due to the decrease of S deposition and the atmospheric sulphur dioxide emissions released by industrial plants. Autophagy, which is a conserved mechanism for nutrient recycling in eukaryotes, is involved in nitrogen, iron, zinc and manganese remobilizations from the rosette to the seeds in Arabidopsis thaliana. Here, we have compared the role of autophagy in sulphur and nitrogen management at the whole plant level, performing concurrent labelling with 34S and 15N isotopes on atg5 mutants and control lines. We show that both 34S and 15N remobilizations from the rosette to the seeds are impaired in the atg5 mutants irrespective of salicylic acid accumulation and of sulphur nutrition. The comparison in each genotype of the partitions of 15N and 34S in the seeds (as % of the whole plant) indicates that the remobilization of 34S to the seeds was twice more efficient than that of 15N in both autophagy mutants and control lines under high S conditions, and also in control lines under low S conditions. This was different in the autophagy mutants grown under low S conditions. Under low S, the partition of 34S to their seeds was indeed not twice as high but similar to that of 15N. Such discrepancy shows that when sulphate availability is scarce, autophagy mutants display stronger defects for 34S remobilization relative to 15N remobilization than under high S conditions. It suggests, moreover, that autophagy mainly affects the transport of N-poor S-containing molecules and possibly sulphate.


2020 ◽  
Vol 67 (6) ◽  
pp. 985-1002 ◽  
Author(s):  
M. A. Lebedeva ◽  
Ya. S. Yashenkova ◽  
I. E. Dodueva ◽  
L. A. Lutova

Abstract Plant developmental processes are very flexible and highly depend on environmental factors. This is largely due to the existence of regulatory mechanisms that systemically control development on the whole plant level. In plants, regulatory peptides produced in the roots have been identified that are activated in response to different factors influencing root system, such as variation in the level of macronutrients (first of all, nitrogen and phosphorus) in the soil, influence of symbiotic microorganisms (soil rhizobial bacteria and arbuscular mycorrhiza fungi), and water deficiency. Among the systemically acting peptides, the most thoroughly investigated are CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) and CEP (C-TERMINALLY ENCODED PEPTIDES) peptides that are capable of travelling through the xylem from the roots to the shoot and triggering responses via binding to specific receptors operating in the phloem of the leaf. This review focuses on the role of these two groups of peptides in molecular dialog between the root and shoot.


2019 ◽  
Author(s):  
Kai Bartusch ◽  
Jana Trenner ◽  
Marcel Quint

AbstractCotyledon micrografting represents a very useful tool for studying the central role of cotyledons during early plant development, especially their interplay with other plant organs with regard to long distance transport. While hypocotyl grafting methods are established, cotyledon grafting is still inefficient. By optimizing cotyledon micrografting, we aim for higher success rates and increased throughput in the model species Arabidopsis thaliana. We established a cut and paste cotyledon surgery procedure on a flat solid but moist surface which improved handling of small plant seedlings. Applying a specific cutting and joining pattern throughput was increased up to 40 seedlings per hour. The combination of short day conditions and low light intensities for germination and long day plus high light intensities and vertical plate positioning after grafting significantly increased ‘ligation’ efficiency. Together, we achieved up to 46 % grafting success in A. thaliana. Reconnection of vasculature was shown by successful transport of a vasculature-specific dye across the grafting site. On a whole plant level, plants with grafted cotyledons match plants with intact cotyledons in biomass production and rosette development. This cut and paste cotyledon-to-petiole grafting protocol simplifies the handling of plant seedlings in surgery, increases the number of grafted plants per hour and produces higher success rates for A. thaliana seedlings. The developed cotyledon micrografting method is also suitable for other plant species of comparable size.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingjing Chang ◽  
Yanliang Guo ◽  
Jingyi Yan ◽  
Zixing Zhang ◽  
Li Yuan ◽  
...  

AbstractMelatonin is a pleiotropic signaling molecule that regulates plant growth and responses to various abiotic stresses. The last step of melatonin synthesis in plants can be catalyzed by caffeic acid O-methyltransferase (COMT), a multifunctional enzyme reported to have N-acetylserotonin O-methyltransferase (ASMT) activity; however, the ASMT activity of COMT has not yet been characterized in nonmodel plants such as watermelon (Citrullus lanatus). Here, a total of 16 putative O-methyltransferase (ClOMT) genes were identified in watermelon. Among them, ClOMT03 (Cla97C07G144540) was considered a potential COMT gene (renamed ClCOMT1) based on its high identities (60.00–74.93%) to known COMT genes involved in melatonin biosynthesis, expression in almost all tissues, and upregulation under abiotic stresses. The ClCOMT1 protein was localized in the cytoplasm. Overexpression of ClCOMT1 significantly increased melatonin contents, while ClCOMT1 knockout using the CRISPR/Cas-9 system decreased melatonin contents in watermelon calli. These results suggest that ClCOMT1 plays an essential role in melatonin biosynthesis in watermelon. In addition, ClCOMT1 expression in watermelon was upregulated by cold, drought, and salt stress, accompanied by increases in melatonin contents. Overexpression of ClCOMT1 enhanced transgenic Arabidopsis tolerance against such abiotic stresses, indicating that ClCOMT1 is a positive regulator of plant tolerance to abiotic stresses.


2001 ◽  
Vol 82 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Vera Thole ◽  
Maria-Laura Garcia ◽  
Clemens M. A. van Rossum ◽  
Lyda Neeleman ◽  
Frans T. Brederode ◽  
...  

RNAs 1 and 2 of the tripartite genome of Alfalfa mosaic virus (AMV) encode the two viral replicase subunits. Full-length DNA copies of RNAs 1 and 2 were used to transform tobacco plants (R12 lines). None of the transgenic lines showed resistance to AMV infection. In healthy R12 plants, the transcripts of the viral cDNAs were copied by the transgenic viral replicase into minus-strand RNAs but subsequent steps in replication were blocked. When the R12 plants were inoculated with AMV RNA 3, this block was lifted and the transgenic RNAs 1 and 2 were amplified by the transgenic replicase together with RNA 3. The transgenic expression of RNAs 1 and 2 largely circumvented the role of coat protein (CP) in the inoculum that is required for infection of nontransgenic plants. The results for the first time demonstrate the role of CP in AMV plus-strand RNA synthesis at the whole plant level.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Meixia Liang ◽  
Yachao Gao ◽  
Tingting Mao ◽  
Xiaoyan Zhang ◽  
Shaoying Zhang ◽  
...  

The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) transporters dominate K+ uptake, transport, and allocation that play a pivotal role in mineral homeostasis and plant adaptation to adverse abiotic stresses. However, molecular mechanisms towards K+ nutrition in forest trees are extremely rare, especially in willow. In this study, we identified 22 KT/HAK/KUP transporter genes in purple osier willow (designated as SpuHAK1 to SpuHAK22) and examined their expression under K+ deficiency, drought, and salt stress conditions. Both transcriptomic and quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuHAKs were predominantly expressed in stems, and the expression levels of SpuHAK1, SpuHAK2, SpuHAK3, SpuHAK7, and SpuHAK8 were higher at the whole plant level, whereas SpuHAK9, SpuHAK11, SpuHAK20, and SpuHAK22 were hardly detected in tested tissues. In addition, both K+ deficiency and salt stress decreased the tissue K+ content, while drought increased the tissue K+ content in purple osier plant. Moreover, SpuHAK genes were differentially responsive to K+ deficiency, drought, and salt stresses in roots. K+ deficiency and salt stress mainly enhanced the expression level of responsive SpuHAK genes. Fifteen putative cis-acting regulatory elements, including the stress response, hormone response, circadian regulation, and nutrition and development, were identified in the promoter region of SpuHAK genes. Our findings provide a foundation for further functional characterization of KT/HAK/KUP transporters in forest trees and may be useful for breeding willow rootstocks that utilize potassium more efficiently.


Sign in / Sign up

Export Citation Format

Share Document