scholarly journals Characterization and Expression of KT/HAK/KUP Transporter Family Genes in Willow under Potassium Deficiency, Drought, and Salt Stresses

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Meixia Liang ◽  
Yachao Gao ◽  
Tingting Mao ◽  
Xiaoyan Zhang ◽  
Shaoying Zhang ◽  
...  

The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) transporters dominate K+ uptake, transport, and allocation that play a pivotal role in mineral homeostasis and plant adaptation to adverse abiotic stresses. However, molecular mechanisms towards K+ nutrition in forest trees are extremely rare, especially in willow. In this study, we identified 22 KT/HAK/KUP transporter genes in purple osier willow (designated as SpuHAK1 to SpuHAK22) and examined their expression under K+ deficiency, drought, and salt stress conditions. Both transcriptomic and quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuHAKs were predominantly expressed in stems, and the expression levels of SpuHAK1, SpuHAK2, SpuHAK3, SpuHAK7, and SpuHAK8 were higher at the whole plant level, whereas SpuHAK9, SpuHAK11, SpuHAK20, and SpuHAK22 were hardly detected in tested tissues. In addition, both K+ deficiency and salt stress decreased the tissue K+ content, while drought increased the tissue K+ content in purple osier plant. Moreover, SpuHAK genes were differentially responsive to K+ deficiency, drought, and salt stresses in roots. K+ deficiency and salt stress mainly enhanced the expression level of responsive SpuHAK genes. Fifteen putative cis-acting regulatory elements, including the stress response, hormone response, circadian regulation, and nutrition and development, were identified in the promoter region of SpuHAK genes. Our findings provide a foundation for further functional characterization of KT/HAK/KUP transporters in forest trees and may be useful for breeding willow rootstocks that utilize potassium more efficiently.

2021 ◽  
Vol 12 ◽  
Author(s):  
Margaret L. Shiraku ◽  
Richard Odongo Magwanga ◽  
Xiaoyan Cai ◽  
Joy Nyangasi Kirungu ◽  
Yanchao Xu ◽  
...  

The acyl-coenzyme A oxidase 3 (ACX3) gene involved in the β-oxidation pathway plays a critical role in plant growth and development as well as stress response. Earlier on, studies focused primarily on the role of β-oxidation limited to fatty acid breakdown. However, ACX3 peroxisomal β-oxidation pathways result in a downstream cascade of events that act as a transduction of biochemical and physiological responses to stress. A role that is yet to be studied extensively. In this study, we identified 20, 18, 22, 23, 20, 11, and 9 proteins in Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum, G. darwinii, G. arboretum, and G. raimondii genomes, respectively. The tetraploid cotton genome had protein ranging between 18 and 22, while diploids had between 9 and 11. After analyzing the gene family evolution or selection pressure, we found that this gene family undergoes purely segmental duplication both in diploids and tetraploids. W-Box (WRKY-binding site), ABRE, CAAT–Box, TATA-box, MYB, MBS, LTR, TGACG, and CGTCA-motif are abiotic stress cis-regulatory elements identified in this gene family. All these are the binding sites for abiotic stress transcription factors, indicating that this gene is essential. Genes found in G. hirsutum showed a clear response to drought and salinity stress, with higher expression under drought and salt stress, particularly in the leaf and root, according to expression analysis. We selected Gh_DO1GO186, one of the highly expressed genes, for functional characterization. We functionally characterized the GhACX3 gene through overexpression and virus-induced gene silencing (VIGS). Overexpression of this gene enhanced tolerance under stress, which was exhibited by the germination assay. The overexpressed seed growth rate was faster relative to control under drought and salt stress conditions. The survival rate was also higher in overexpressed plants relative to control plants under stress. In contrast, the silencing of the GhACX3 gene in cotton plants resulted in plants showing the stress susceptibility phenotype and reduced root length compared to control. Biochemical analysis also demonstrated that GhACX3-silenced plants experienced oxidative stress while the overexpressed plants did not. This study has revealed the importance of the ACX3 family during stress tolerance and can breed stress-resilient cultivar.


2021 ◽  
Author(s):  
Margaret shiraku ◽  
Richard Odongo Magwanga ◽  
Xiaoyan Cai ◽  
Joy Nyangasi Kirungu ◽  
Yanchao Xu ◽  
...  

Abstract BackgroundCotton is an important economic crop and the primary source of natural fiber. The effects of drought and salt stresses threaten strong fiber and large quantity production. However, due to the ever-changing climatic conditions, plants have evolved various mechanisms to cope with the effects of various stress factors. One of the plant's transcription factors with positive effects in alleviating effects of drought and salt stresses is the Ribosomal protein Large (RPL) gene families. This has prompted the functional characterization of the RPL14B gene previously identified in the QTL region as a candidate gene that responds to stress and initiates mechanisms that enhance stress tolerance. ResultsComprehensive identification and functional analysis were conducted in this study, in which 26, 8, and 5 proteins containing the RPL14B domain were identified in G. hirsutum, G. raimondii, and G. arboreum, respectively. Moreover, Cis-regulatory elements associated with the RPL genes were identified. The Myb binding sites (MBS), Myb, Abscisic acid-responsive element (ABRE), CAAT-box, TATA box, TGACG-motif, and CGTCA-motif responsive to Meja, and TCA- motif responsive to salicylic acid were identified. Validation of the candidate gene through virus-induced gene silencing (VIGS) revealed that the Gh_D01G0234 (RPL14B) knockdown significantly affected the cotton seedling's performance under drought/ salt stress conditions as evidenced by a significant reduction in various morphological and physiological traits. Moreover, antioxidant enzyme levels were significantly reduced in VIGS-plants, with substantially higher oxidant enzyme levels, as evidenced by the higher concentration level of Malondialdehyde (MDA). ConclusionThe results revealed the potential role of the gene, and it can be further exploited to breed climate-smart cotton varieties resilient to drought and salt stress conditions


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Margaret Linyerera SHIRAKU ◽  
Richard Odongo MAGWANGA ◽  
Xiaoyan CAI ◽  
Joy Nyangasi KIRUNGU ◽  
Yanchao XU ◽  
...  

Abstract Background Cotton is a valuable economic crop and the main significant source of natural fiber for textile industries globally. The effects of drought and salt stress pose a challenge to strong fiber and large-scale production due to the ever-changing climatic conditions. However, plants have evolved a number of survival strategies, among them is the induction of various stress-responsive genes such as the ribosomal protein large (RPL) gene. The RPL gene families encode critical proteins, which alleviate the effects of drought and salt stress in plants. In this study, comprehensive and functional analysis of the cotton RPL genes was carried out under drought and salt stresses. Results Based on the genome-wide evaluation, 26, 8, and 5 proteins containing the RPL14B domain were identified in Gossypium hirsutum, G. raimondii, and G. arboreum, respectively. Furthermore, through bioinformatics analysis, key cis-regulatory elements related to RPL14B genes were discovered. The Myb binding sites (MBS), abscisic acid-responsive element (ABRE), CAAT-box, TATA box, TGACG-motif, and CGTCA-motif responsive to methyl jasmonate, as well as the TCA-motif responsive to salicylic acid, were identified. Expression analysis revealed a key gene, Gh_D01G0234 (RPL14B), with significantly higher induction levels was further evaluated through a reverse genetic approach. The knockdown of Gh_D01G0234 (RPL14B) significantly affected the performance of cotton seedlings under drought/salt stress conditions, as evidenced by a substantial reduction in various morphological and physiological traits. Moreover, the level of the antioxidant enzyme was significantly reduced in VIGS-plants, while oxidant enzyme levels increased significantly, as demonstrated by the higher malondialdehyde concentration level. Conclusion The results revealed the potential role of the RPL14B gene in promoting the induction of antioxidant enzymes, which are key in oxidizing the various oxidants. The key pathways need to be investigated and even as we exploit these genes in the developing of more stress-resilient cotton germplasms.


2017 ◽  
Vol 14 (3) ◽  
pp. 869-880 ◽  
Author(s):  
Alok Ranjan ◽  
Kumari Archana ◽  
Sanjay Ranjan

ABSTRACT: The cyclophilins genes are induced by abiotic stresses, yet their detailed function in drought and salinity remain largely unclear and need to be elaborately validated.Expression of cyclophilin was drastically induced under droughtconditions in Gossypiumherbaceum L. suggesting its stress-responsive function. In an attempt to characterize the role of G.herbacuemcyclophilingene GhCYP1, we overexpressed the GhCYP1 in tobaccousing Agrobacteriummediated transformationand explored its possible involvement in drought and salt stress tolerance.The transgenic plantsover expressing GhCYP1 exhibited tolerance against drought stress as evidenced by leaf disc assay, estimation of chlorophylland proline content along with various physiological parameters such as stomatal conductance, rate of photosynthesis and water use efficiency.The drought stressed transgenic tobaccoplants exhibited higher proline content in leaf ( 1.84 µ mol-g fw) and root (2.02µ mol-g fw ),while a reverse trend was observed in the drought stressed wild type plants, implicating the involvement of GhCYP1 in the maintenance of physiological homeostasis. Thedetail physiological, biochemical and molecular analysis results demonstrate the implicit role of GhCYP1 in conferring multiple abiotic stress tolerance at whole-plant level.


2018 ◽  
Vol 19 (8) ◽  
pp. 2395 ◽  
Author(s):  
Tao Su ◽  
Mei Han ◽  
Jie Min ◽  
Peixian Chen ◽  
Yuxin Mao ◽  
...  

Invertases are essential enzymes that irreversibly catalyze the cleavage of sucrose into glucose and fructose. Cell wall invertase (CWI) and vacuolar invertase (VI) are glycosylated proteins and exert fundamental roles in plant growth as well as in response to environmental cues. As yet, comprehensive insight into invertase encoding genes are lacking in Glycine max. In the present study, the systematic survey of gene structures, coding regions, regulatory elements, conserved motifs, and phylogenies resulted in the identification of thirty–two putative invertase genes in soybean genome. Concomitantly, impacts on gene expression, enzyme activities, proteins, and soluble sugar accumulation were explored in specific tissues upon stress perturbation. In combination with the observation of subcellular compartmentation of the fluorescent fusion protein that indeed exported to apoplast, heterologous expression, and purification in using Pichia pastoris system revealed that GmCWI4 was a typical extracellular invertase. We postulated that GmCWI4 may play regulatory roles and be involved in pathogenic fungi defense. The experimental evaluation of physiological significance via phenotypic analysis of mutants under stress exposure has been initiated. Moreover, our paper provides theoretical basis for elucidating molecular mechanisms of invertase in association with inhibitors underlying the stress regime, and will contribute to the improvement of plant performance to a diverse range of stressors.


2013 ◽  
Vol 726-731 ◽  
pp. 217-221 ◽  
Author(s):  
Xue Gong ◽  
Ming Li Liu ◽  
Che Wang ◽  
Li Jun Zhang ◽  
Wei Liu

Sporadic reports indicated that salt stress induced the expression of sucrose transporter genes, and sucrose transporters (SUCs or SUTs) as the important carriers are responsible for the loading, unloading and distribution of sucrose, but the study that SUCs are involved in sucrose distribution and metabolism under salt stress at the whole-plant level has not been reported to date. AtSUC4, as the unique member of low affinity/high capacity SUT4-clade inArabidopsis thaliana, may play an important role in plant stress tolerance. Here, through analyzing two homozygous mutation lines ofAtSUC4(Atsuc4-1andAtsuc4-2), we found salt stress induced higher sucrose, fructose and glucose content in shoots and lower sucrose, fructose and glucose content in roots of these mutants compared with the wild-type (WT), resulting in an imbalance of sucrose distribution and fructose and glucose accumulation changes of sucrose metabolitesat the whole-plant level. Our results indicated thatAtSUC4is involved in salt stress tolerance by the regulation of sucrose distribution and metabolism.


Author(s):  
Pavli OI ◽  
◽  
Kempapidis K ◽  
Maggioros L ◽  
Foti C ◽  
...  

Salinity is one of the most detrimental abiotic stresses leading to considerable yield and economic losses worldwide. Lettuce is a relatively salt sensitive species, thus placing the interest in the release of salt-tolerant cultivars to enhance production in saline soils. This study aimed at investigating the response of lettuce germplasm to salt stress at the germination and at the whole plant level and to examine possibilities of early selection for salt tolerant genotypes. Fifteen lettuce commercial varieties were initially screened for salt tolerance on the basis of seed germination and seedling growth potential under salt stress conditions (0, 50, 100, 150 mM NaCl). The in vitro evaluation revealed the existence of considerable genetic variation related to salt tolerance at germination and allowed for the classification of genotypes into tolerant, moderately tolerant and sensitive to salt stress. Based on this classification, six cultivars were assessed at the whole plant level using plant height, chlorophyll content and fresh and dry biomass weight as evaluation criteria. Overall findings point to the existence of a satisfactory association of genotype performance between germination and later growth stages, thus suggesting the feasibility of screening for salt tolerance at early growth stages. This approach may considerably upgrade the efficiency of selecting suitable germplasm material for cultivation in saline soils or introgression into relevant breeding programs.


2016 ◽  
Author(s):  
Frederic Bouche ◽  
Maria D'Aloia ◽  
Pierre Tocquin ◽  
Guillaume Lobet ◽  
Nathalie Detry ◽  
...  

Molecular data concerning the involvement of the roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutation was reported to alter flowering time are expressed in the roots but only few flowering integrators were found. Transcriptomic analysis of the roots during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. A delay in clock gene expression was observed upon extension of the photoperiod. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories and cis-regulatory elements converged towards sugar signaling. We inferred that roots are integrated in systemic signaling whereby carbon supply coordinates growth at the whole plant level during the induction of flowering.


2019 ◽  
Author(s):  
Julien Thouin ◽  
Man Yuan Guo ◽  
Ikram Zribi ◽  
Nicolas Pauly ◽  
Mohammed Mouradi ◽  
...  

SUMMARYSoil salinity is one of the most important abiotic stresses affecting plant growth. In legumes, symbiotic nitrogen fixation in nodules is affected by salt stress, and salinity tolerance is variable among species. Genes from the High affinity K+ Transporter (HKT) family are known to play crucial roles in salt stress tolerance in different plant species. In legumes these transporters are still very poorly characterized.. Here we study the HKT transporter family from the model legume Medicago trunacatula, which is moderately tolerant to salinity. The genome of this species comprises five HKT genes, hereafter named MtHKT1;1 to MtHKT1;5. Phylogenetic analysis indicated that the MtHKT polypeptides belong to HKT subfamily 1. Three members (MtHKT1;2, MtHKT1;4 and MtHKT1;5) of the Medicago truncatula family were cloned and expressed in Xenopus oocytes. Their electrophysiological properties revealed a permeability 10 times higher for Na+ than for K+ and varying rectification properties. Expression analyses of the three MtHKT genes under different biotic and abiotic conditions suggested that MtHKT1;5 is the main transporter from this family in the root, the three genes sharing a decrease of expression in drought and salt stress conditions in non inoculated plants as well as plants inoculated with rhizobia. In the shoot, the three MtHKT would be present at similar levels independently on the applied stresses. Based on biomass and ion content analysis, the nodule appeared as the most sensitive organ to the applied salt and drought stresses. The level of expression of the three MtHKT genes was strongly decreased by both stresses in the nodule.


Sign in / Sign up

Export Citation Format

Share Document