scholarly journals Management of Factors for Improving Antigen–Antibody Interaction in Lateral flow Immunoassay of Tetracycline in Human Serum Samples

2019 ◽  
Vol 12 (1) ◽  
pp. 17-24
Author(s):  
Anna N. Berlina ◽  
Anastasia V. Bartosh ◽  
Anatoly V. Zherdev ◽  
Sergei A. Eremin ◽  
Boris B. Dzantiev

Detection of antibiotics in the blood is necessary for characterizing their common or individual pharmacokinetics. This has increased the need in rapid detection techniques, such as lateral flow immunoassay, for the on-site control of antibiotics. The present study characterized factors influencing the analytical parameters of lateral flow immunoassay to increase its sensitivity for detecting tetracycline in human serum samples. Assay sensitivity was increased by altering the concentrations of immunoreagents and surfactant and the number of interaction stages in the assay with indirect labeling a specific antibody. The optimal assay conditions reduced the limit of visual detection of tetracycline from 100 to 10 ng/mL. The developed assay allowed us to detect tetracycline in both two-fold diluted and undiluted human serum samples within 15 min. Our results suggest that the developed assay can be used to screen patients under antibiotic treatment.

1990 ◽  
Vol 126 (1) ◽  
pp. 159-168 ◽  
Author(s):  
A. N. Thakur ◽  
R. Coles ◽  
A. Sesay ◽  
B. Earley ◽  
H. S. Jacobs ◽  
...  

ABSTRACT A previously described in-vitro rat granulosa cell plasminogen activator bioassay for FSH has been modified and applied in the assay of human serum. This modified method consists of exposing the diethylstilboestrol-stimulated granulosa cells from 25- to 26-day-old rats to FSH or test substance for 3·5 h in wells coated with 125I-labelled fibrinogen and treated with thrombin. Following stimulation with FSH, the dose-related production of plasminogen activator was measured as the degree of 125I-labelled fibrinolysis in the presence of added plasminogen. Using the urinary FSH/LH bioassay reference preparation as the assay standard, the useful range of the assay was 0·3–15IU/l, with an assay sensitivity of 0·3 IU/l. As determined using purified glycoprotein hormone preparations, the assay was highly specific for FSH. The minor degree of FSH bioactivity measured in some of the hormone preparations was accounted for by the amount of FSH contamination in these preparations. To abolish interference caused by unknown serum factors, we heat-treated the serum samples for 15 min at 56 °C before the assay. The results indicated that neither immunoreactivity nor bioactivity was affected by this treatment. Furthermore, heat-treated human sera gave responses parallel to the standard curve at the three dose levels (2, 4 and 8 μl) studied. We used this bioassay to estimate the FSH-like bioactivity in 15 human serum samples. The estimates of immunoreactive FSH in these samples correlated well with the corresponding FSH bioactivity (r = 0·745, n = 15 and P < 0·05). The results indicate that with this sensitive and rapid (completed within 24 h) bioassay, it should be possible to measure FSH bioactivity in heat-treated human serum samples. Journal of Endocrinology (1990) 126, 159–168


Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 198
Author(s):  
Kseniya V. Serebrennikova ◽  
Olga D. Hendrickson ◽  
Elena A. Zvereva ◽  
Demid S. Popravko ◽  
Anatoly V. Zherdev ◽  
...  

This study provides a comparative assessment of the various nanodispersed markers and related detection techniques used in the immunochromatographic detection of an antibiotic lincomycin (LIN). Improving the sensitivity of the competitive lateral flow immunoassay is important, given the increasing demands for the monitoring of chemical contaminants in food. Gold nanoparticles (AuNPs) and CdSe/ZnS quantum dots (QDs) were used for the development and comparison of three approaches for the lateral flow immunoassay (LFIA) of LIN, namely, colorimetric, fluorescence, and surface-enhanced Raman spectroscopy (SERS)-based LFIAs. It was demonstrated that, for colorimetric and fluorescence analysis, the detection limits were comparable at 0.4 and 0.2 ng/mL, respectively. A SERS-based method allowed achieving the gain of five orders of magnitude in the assay sensitivity (1.4 fg/mL) compared to conventional LFIAs. Therefore, an integration of a SERS reporter into the LFIA is a promising tool for extremely sensitive quantitative detection of target analytes. However, implementation of this time-consuming technique requires expensive equipment and skilled personnel. In contrast, conventional AuNP- and QD-based LFIAs can provide simple, rapid, and inexpensive point-of-care testing for practical use.


1985 ◽  
Vol 31 (2) ◽  
pp. 247-251 ◽  
Author(s):  
J Bury ◽  
M Rosseneu

Abstract We developed a quantitative assay for apolipoprotein AI (apo AI) in human serum, using a "sandwich"-type enzyme-linked immunosorbent assay. Diluted serum samples were pipetted into the wells of polystyrene microtiter plates that had been previously coated with purified rabbit anti-human apo AI antibodies. After incubation for 2 h and washing, antibodies conjugated to horseradish peroxidase (EC 1.11.1.7) were added and incubated for 2 h; after further washing, the bound enzyme was assayed by oxidation of o-phenylenediamine. Assay conditions were optimized for the incubation time and the amounts of coating antibodies and conjugate. Assay sensitivity is about 0.5 ng of apo AI, with a working range of 1 to 14 ng, similar to that of radioimmunoassays for human apo AI. The standard curves for apo AI in serum or HDL and for purified apo AI were parallel. Delipidation, heat treatment, or addition of detergents did not affect the amount of immunoassayable apo AI in human serum. The intra- and interassay CVs were 4 and 8%, respectively. Results for 100 serum samples compared well with those by immunonephelometry (r = 0.94).


2019 ◽  
Vol 15 (6) ◽  
pp. 678-684
Author(s):  
Biljana Nigović ◽  
Jakov Vlak

Background: High uric acid serum level, hyperuricemia, is now associated with many diseases such as gout, chronic kidney disease, hypertension, coronary artery disease and diabetes. Febuxostat is a novel selective xanthine oxidase inhibitor approved for the treatment of hyperuricemia. Objective: The aim of this study was to develop a first analytical method for the simultaneous determination of febuxostat and uric acid. Methods: An unmodified boron-doped diamond electrode provided concurrent quantitation of drug at low levels and uric acid, which has clinical significance in the diagnosis and therapy of hyperuricemia, at relatively high concentrations. The direct square-wave voltammetric method was applied to the analysis of both analytes in human serum samples. Results: Under the optimized conditions, the linear response of peak current on febuxostat concentration was achieved in the range from 7.5 × 10-7 to 3 × 10-5 M, while uric acid showed two linear ranges of 5 × 10-6 - 5 × 10-5 M and 5 × 10-5 - 2 × 10-4 M. The method was successfully utilised for quantification of both analytes in human serum samples. Good recoveries were obtained without interference from common inorganic cations and anions as well as glucose, dopamine, ascorbic and folic acids at concentrations expected in physiological conditions. Conclusion: The great benefits of developed method are fast analysis (only 7.5 s for run), low cost and simplicity of performance.


2009 ◽  
Vol 15 ◽  
pp. 232-234 ◽  
Author(s):  
E.M Mendes do Nascimento ◽  
S. Colombo ◽  
T.K. Nagasse-Sugahara ◽  
R.N. Angerami ◽  
M.R. Resende ◽  
...  

2016 ◽  
Vol 129 ◽  
pp. 205-212 ◽  
Author(s):  
Adrian Marcelo Granero ◽  
Gastón Darío Pierini ◽  
Sebastián Noel Robledo ◽  
María Susana Di Nezio ◽  
Héctor Fernández ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Gregory R. Wiedman ◽  
Yanan Zhao ◽  
David S. Perlin

ABSTRACT Clinicians need a better way to accurately monitor the concentration of antimicrobials in patient samples. In this report, we describe a novel, low-sample-volume method to monitor the azole-class antifungal drug posaconazole, as well as certain other long-chain azole-class antifungal drugs in human serum samples. Posaconazole represents an important target for therapeutic drug monitoring (TDM) due to its widespread use in treating invasive fungal infections and well-recognized variability of pharmacokinetics. The current “gold standard” requires trough and peak monitoring through high-pressure liquid chromatography (HPLC) or liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Other methods include bioassays that use highly susceptible strains of fungi in culture plates or 96-well formats to monitor concentrations. Currently, no method exists that is both highly accurate in detecting free drug concentrations and is also rapid. Herein, we describe a new method using reduced graphene oxide (rGO) and a fluorescently labeled aptamer, which can accurately assess clinically relevant concentrations of posaconazole and other long-chain azole-class drugs in little more than 1 h in a total volume of 100 µl. IMPORTANCE This work describes an effective assay for TDM of long-chain azole-class antifungal drugs that can be used in diluted human serum samples. This assay will provide a quick, cost-effective method for monitoring concentrations of drugs such as posaconazole that exhibit well-documented pharmacokinetic variability. Our rGO-aptamer assay has the potential to improve health care for those struggling to treat fungal infections in rural or resource-limited setting.


2016 ◽  
Vol 8 (2) ◽  
pp. 249-255 ◽  
Author(s):  
B. L'Homme ◽  
J.-F. Focant

Human exposure to POPs is of concern and typical biomonitoring studies require large amounts of blood (5–75 mL) from participants. As a proof of concept, we developed a miniaturized method based on MEPS and CZC applied to GC-HRTOFMS for the measurement of markers of exposure (PCB-153, DDE) in 20 μL human serum samples.


Sign in / Sign up

Export Citation Format

Share Document