scholarly journals Magnetic and Structural Behaviour of Cobalt & Nickel Substituted Calcium W-Type Nanosize Hexaferrites

2021 ◽  
Vol 18 (3) ◽  
pp. 298-304
Author(s):  
Smita C Tolani ◽  
Kishorchandra G Rewatkar

The available literature and research work on W-type hexaferrites is mainly focused on Co- and Zn-based calcium W-type hexagonal ferrites with a variety of cationic substitutions. The Modifications in the properties of the Calcium W-type ferrite based on Ni2+ as the divalent metal ion, however, is not studied sufficiently in the research literature vailable. In this study, the focus is mainly on the effects of substitution of Ni2+ on the properties of CaCo2W exaferrites. The investigations carried out are mainly XRD, SEM and VSM. The main objective of this research investigation is to study the effect of substitution of Nickel and Cobalt on the structural and magnetic properties of calcium W-type hexaferrite CaCo2-xNixFe16O27 (x=0, 1 and 2). XRD analysis and characterization revealed slight decrease in the values of lattice constants ‘a’ and ‘c’ with increase in concentration ‘x’. The particle size was confirmed from SEM and TEM images. The analysis of VSM for magnetic properties reveals decrease in coercivity and increase in the values of saturation magnetization as concentration increases. The results of measurements made bythe various experimental techniques and the observations were compared to understand the crystalline and magnetic structure of the compounds

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-937-C8-938
Author(s):  
O. Kalogirou ◽  
A. C. Stergiou ◽  
D. Samaras ◽  
S. Nicolopoulos ◽  
A. Bekka ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4061
Author(s):  
Yongtao Li ◽  
Liqing Liu ◽  
Dehao Wang ◽  
Hongguang Zhang ◽  
Xuemin He ◽  
...  

BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the occupation site of non-magnetically active Zn2+.


2021 ◽  
pp. 131291
Author(s):  
Ahmed S. Faihan ◽  
Mohammad R. Hatshan ◽  
Ali S. Alqahtani ◽  
Fahd A. Nasr ◽  
Subhi A. Al-Jibori ◽  
...  

2005 ◽  
Vol 528 (2) ◽  
pp. 219-228 ◽  
Author(s):  
Blanca Madrigal González ◽  
Graham Christie ◽  
Colin A.B. Davidson ◽  
Jeff Blyth ◽  
Christopher R. Lowe

2018 ◽  
Vol 781 ◽  
pp. 36-40
Author(s):  
Olga Dotsenko ◽  
Kirill Frolov ◽  
Dmitry Wagner ◽  
Veronika Dotsenko ◽  
Dmitry Aksentev

In this study, Co0,7Zn1,3W powders were synthesized and investigated at the microwave region. The solid-state reaction method and self-propagating high-temperature synthesis were used to production of the two kinds of hexaferrite powders. The high-frequency magnetic properties under temperature effect have been studied. It is show, that there is a nonlinear dependence on temperature within the 0 – +40 °C temperature range.


Sign in / Sign up

Export Citation Format

Share Document