scholarly journals Rethinking Cluster-based Routing in Wireless Sensor Networks

2019 ◽  
Vol 12 (1) ◽  
pp. 03-07 ◽  
Author(s):  
DIMITRIS KANELLOPOULOS

A wireless sensor network (WSN) can be employed in many application areas such as traffic control and industrial automation. In WSNs, clustering achieves energy efficiency and scalable performance. A cluster is formed by several sensors nodes, and one of them is elected as cluster-head (CH). A CH collects information from the cluster members and sends aggregated sensed data to the base station (BS) or another CH. The main task of a routing protocol in a WSN is to forward these sensed data to the BS. This paper analyses the advantages of cluster-based routing protocols vs. flat routing protocols in WSNs.

Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4579 ◽  
Author(s):  
Yang Liu ◽  
Qiong Wu ◽  
Ting Zhao ◽  
Yong Tie ◽  
Fengshan Bai ◽  
...  

Cluster-based hierarchical routing protocols play an essential role in decreasing the energy consumption of wireless sensor networks (WSNs). A low-energy adaptive clustering hierarchy (LEACH) has been proposed as an application-specific protocol architecture for WSNs. However, without considering the distribution of the cluster heads (CHs) in the rotation basis, the LEACH protocol will increase the energy consumption of the network. To improve the energy efficiency of the WSN, we propose a novel modified routing protocol in this paper. The newly proposed improved energy-efficient LEACH (IEE-LEACH) protocol considers the residual node energy and the average energy of the networks. To achieve satisfactory performance in terms of reducing the sensor energy consumption, the proposed IEE-LEACH accounts for the numbers of the optimal CHs and prohibits the nodes that are closer to the base station (BS) to join in the cluster formation. Furthermore, the proposed IEE-LEACH uses a new threshold for electing CHs among the sensor nodes, and employs single hop, multi-hop, and hybrid communications to further improve the energy efficiency of the networks. The simulation results demonstrate that, compared with some existing routing protocols, the proposed protocol substantially reduces the energy consumption of WSNs.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Rohit Pachlor ◽  
Deepti Shrimankar

A wireless sensor network (WSN) is a collection of hundreds to thousands of compact, battery-operated sensors. It is deployed to accumulate useful information from the nearby environment. Depending upon the type of application, the sensors have to work for months to years with a finite energy source. In some extreme environments, the replacement of energy source is challenging and sometimes not feasible. Therefore, it is vital for sensors to perform their duties in an energy efficient way to improve the longevity of the network. This paper proposes an energy-efficient centralized cluster-based routing protocol called Vice-Cluster-Head-Enabled Centralized Cluster-based Routing protocol (VCH-ECCR). The VCH-ECCR uses a two-level hierarchy of vice cluster heads to use the energy of sensors efficiently and to cut back the frequency of the clustering. The performance of VCH-ECCR is compared with low-energy adaptive clustering hierarchy (LEACH), LEACH-Centralized (LEACH-C), and base station controlled dynamic clustering protocol (BCDCP). The experimental results show that the VCH-ECCR outperforms over its comparative in terms of network lifetime, overall energy consumption, and throughput.


2020 ◽  
Vol 39 (6) ◽  
pp. 8529-8542
Author(s):  
M. Martinaa ◽  
B. Santhi ◽  
A. Raghunathan

Wireless Sensor Networks (WSNs) is created, stemming from their applications in distinct areas. Huge sensor nodes are deployed in geographically isolated regions in WSN. As a result of uninterrupted transmission, the energy level of the nodes gets rapidly depleted. Sensor node batteries cannot be replaced or recharged often and maintaining the energy level is a crucial issue. Thus energy efficiency is the significant factor to be consider in WSN. This paper focuses to implement an efficient clustering and routing protocols for maximized network lifetime. Clustering has been confirmed as a successful approach in network organization. The fundamental responsibilities of the clustering mechanism include improved energy efficiency and extended network lifespan. In this work, energy efficiency is improved to maximize lifespan of the WSN by proposing a novel method known as the Populated Cluster aware Routing Protocol (PCRP). The proposed method comprises three different steps: cluster formation, cluster head selection, and multi-hop data transmission. All sensor nodes are joined to a Cluster Head in a single hop in the cluster formation phase. Node distance is calculated and from which cluster head is selected. Then, cluster head aggregates the data from sensor nodes and transfer to the Base Station (BS). The shortest pathway is estimated by the Energy Route Request Adhoc On-demand Distance Vector (ERRAODV) algorithm. The proposed method considers the residual energy involved to attain high energy efficiency and network stability. The experimental analysis is demonstrated to validate the proposed method with existing, which improves the network lifespan. Vital parameters are validated using Network Simulator (NS2).


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1021
Author(s):  
Zhanserik Nurlan ◽  
Tamara Zhukabayeva ◽  
Mohamed Othman

Wireless sensor networks (WSN) are networks of thousands of nodes installed in a defined physical environment to sense and monitor its state condition. The viability of such a network is directly dependent and limited by the power of batteries supplying the nodes of these networks, which represents a disadvantage of such a network. To improve and extend the life of WSNs, scientists around the world regularly develop various routing protocols that minimize and optimize the energy consumption of sensor network nodes. This article, introduces a new heterogeneous-aware routing protocol well known as Extended Z-SEP Routing Protocol with Hierarchical Clustering Approach for Wireless Heterogeneous Sensor Network or EZ-SEP, where the connection of nodes to a base station (BS) is done via a hybrid method, i.e., a certain amount of nodes communicate with the base station directly, while the remaining ones form a cluster to transfer data. Parameters of the field are unknown, and the field is partitioned into zones depending on the node energy. We reviewed the Z-SEP protocol concerning the election of the cluster head (CH) and its communication with BS and presented a novel extended mechanism for the selection of the CH based on remaining residual energy. In addition, EZ-SEP is weighted up using various estimation schemes such as base station repositioning, altering the field density, and variable nodes energy for comparison with the previous parent algorithm. EZ-SEP was executed and compared to routing protocols such as Z-SEP, SEP, and LEACH. The proposed algorithm performed using the MATLAB R2016b simulator. Simulation results show that our proposed extended version performs better than Z-SEP in the stability period due to an increase in the number of active nodes by 48%, in efficiency of network by the high packet delivery coefficient by 16% and optimizes the average power consumption compared to by 34.


Author(s):  
Bachujayendra Kumar ◽  
Rajya Lakshmidevi K ◽  
M Verginraja Sarobin

Wireless sensor networks (WSNs) have been used widely in so many applications. It is the most efficient way to monitor the information. There areso many ways to deploy the sensors. Many problems are not identified and solved. The main challenge of WSN is energy efficiency and information security. WSN power consumption is reduced by genetic algorithm-based clustering algorithm. Information from cluster head to base station may have a lot of chances to get hacked. The most reliable way to manage energy consumption is clustering, and encryption will suit best for information security. In this paper, we explain clustering techniques and a new algorithm to encrypt the data in the network.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


Sign in / Sign up

Export Citation Format

Share Document