Interpretation and reporting of predictive or diagnostic machine-learning research in Trauma & Orthopaedics

2021 ◽  
Vol 103-B (12) ◽  
pp. 1754-1758
Author(s):  
Luke Farrow ◽  
Mingjun Zhong ◽  
George Patrick Ashcroft ◽  
Lesley Anderson ◽  
R. M. Dominic Meek

There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines. Cite this article: Bone Joint J 2021;103-B(12):1754–1758.

2021 ◽  
Vol 3 ◽  
Author(s):  
Ahmed Al-Hindawi ◽  
Ahmed Abdulaal ◽  
Timothy M. Rawson ◽  
Saleh A. Alqahtani ◽  
Nabeela Mughal ◽  
...  

The SARS-CoV-2 virus, which causes the COVID-19 pandemic, has had an unprecedented impact on healthcare requiring multidisciplinary innovation and novel thinking to minimize impact and improve outcomes. Wide-ranging disciplines have collaborated including diverse clinicians (radiology, microbiology, and critical care), who are working increasingly closely with data-science. This has been leveraged through the democratization of data-science with the increasing availability of easy to access open datasets, tutorials, programming languages, and hardware which makes it significantly easier to create mathematical models. To address the COVID-19 pandemic, such data-science has enabled modeling of the impact of the virus on the population and individuals for diagnostic, prognostic, and epidemiological ends. This has led to two large systematic reviews on this topic that have highlighted the two different ways in which this feat has been attempted: one using classical statistics and the other using more novel machine learning techniques. In this review, we debate the relative strengths and weaknesses of each method toward the specific task of predicting COVID-19 outcomes.


Author(s):  
Feidu Akmel ◽  
Ermiyas Birihanu ◽  
Bahir Siraj

Software systems are any software product or applications that support business domains such as Manufacturing,Aviation, Health care, insurance and so on.Software quality is a means of measuring how software is designed and how well the software conforms to that design. Some of the variables that we are looking for software quality are Correctness, Product quality, Scalability, Completeness and Absence of bugs, However the quality standard that was used from one organization is different from other for this reason it is better to apply the software metrics to measure the quality of software. Attributes that we gathered from source code through software metrics can be an input for software defect predictor. Software defect are an error that are introduced by software developer and stakeholders. Finally, in this study we discovered the application of machine learning on software defect that we gathered from the previous research works.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Work ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhang Mengqi ◽  
Wang Xi ◽  
V.E. Sathishkumar ◽  
V. Sivakumar

BACKGROUND: Nowadays, the growth of smart cities is enhanced gradually, which collects a lot of information and communication technologies that are used to maximize the quality of services. Even though the intelligent city concept provides a lot of valuable services, security management is still one of the major issues due to shared threats and activities. For overcoming the above problems, smart cities’ security factors should be analyzed continuously to eliminate the unwanted activities that used to enhance the quality of the services. OBJECTIVES: To address the discussed problem, active machine learning techniques are used to predict the quality of services in the smart city manages security-related issues. In this work, a deep reinforcement learning concept is used to learn the features of smart cities; the learning concept understands the entire activities of the smart city. During this energetic city, information is gathered with the help of security robots called cobalt robots. The smart cities related to new incoming features are examined through the use of a modular neural network. RESULTS: The system successfully predicts the unwanted activity in intelligent cities by dividing the collected data into a smaller subset, which reduces the complexity and improves the overall security management process. The efficiency of the system is evaluated using experimental analysis. CONCLUSION: This exploratory study is conducted on the 200 obstacles are placed in the smart city, and the introduced DRL with MDNN approach attains maximum results on security maintains.


2021 ◽  
Vol 11 (7) ◽  
pp. 317
Author(s):  
Ismael Cabero ◽  
Irene Epifanio

This paper presents a snapshot of the distribution of time that Spanish academic staff spend on different tasks. We carry out a statistical exploratory study by analyzing the responses provided in a survey of 703 Spanish academic staff in order to draw a clear picture of the current situation. This analysis considers many factors, including primarily gender, academic ranks, age, and academic disciplines. The tasks considered are divided into smaller activities, which allows us to discover hidden patterns. Tasks are not only restricted to the academic world, but also relate to domestic chores. We address this problem from a totally new perspective by using machine learning techniques, such as cluster analysis. In order to make important decisions, policymakers must know how academic staff spend their time, especially now that legal modifications are planned for the Spanish university environment. In terms of the time spent on quality of teaching and caring tasks, we expose huge gender gaps. Non-recognized overtime is very frequent.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850011 ◽  
Author(s):  
Athanasios Tagaris ◽  
Dimitrios Kollias ◽  
Andreas Stafylopatis ◽  
Georgios Tagaris ◽  
Stefanos Kollias

Neurodegenerative disorders, such as Alzheimer’s and Parkinson’s, constitute a major factor in long-term disability and are becoming more and more a serious concern in developed countries. As there are, at present, no effective therapies, early diagnosis along with avoidance of misdiagnosis seem to be critical in ensuring a good quality of life for patients. In this sense, the adoption of computer-aided-diagnosis tools can offer significant assistance to clinicians. In the present paper, we provide in the first place a comprehensive recording of medical examinations relevant to those disorders. Then, a review is conducted concerning the use of Machine Learning techniques in supporting diagnosis of neurodegenerative diseases, with reference to at times used medical datasets. Special attention has been given to the field of Deep Learning. In addition to that, we communicate the launch of a newly created dataset for Parkinson’s disease, containing epidemiological, clinical and imaging data, which will be publicly available to researchers for benchmarking purposes. To assess the potential of the new dataset, an experimental study in Parkinson’s diagnosis is carried out, based on state-of-the-art Deep Neural Network architectures and yielding very promising accuracy results.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jesús Leonardo López-Hernández ◽  
Israel González-Carrasco ◽  
José Luis López-Cuadrado ◽  
Belén Ruiz-Mezcua

Nowadays, the recognition of emotions in people with sensory disabilities still represents a challenge due to the difficulty of generalizing and modeling the set of brain signals. In recent years, the technology that has been used to study a person’s behavior and emotions based on brain signals is the brain–computer interface (BCI). Although previous works have already proposed the classification of emotions in people with sensory disabilities using machine learning techniques, a model of recognition of emotions in people with visual disabilities has not yet been evaluated. Consequently, in this work, the authors present a twofold framework focused on people with visual disabilities. Firstly, auditory stimuli have been used, and a component of acquisition and extraction of brain signals has been defined. Secondly, analysis techniques for the modeling of emotions have been developed, and machine learning models for the classification of emotions have been defined. Based on the results, the algorithm with the best performance in the validation is random forest (RF), with an accuracy of 85 and 88% in the classification for negative and positive emotions, respectively. According to the results, the framework is able to classify positive and negative emotions, but the experimentation performed also shows that the framework performance depends on the number of features in the dataset and the quality of the Electroencephalogram (EEG) signals is a determining factor.


Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


Sign in / Sign up

Export Citation Format

Share Document