scholarly journals The chemical ecology of aphid host alternation: How do return migrants find the primary host plant?

2001 ◽  
Vol 36 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Glen Powell ◽  
Jim Hardie
2018 ◽  
Author(s):  
Peter Thorpe ◽  
Carmen M. Escudero-Martinez ◽  
Sebastian Eves-van den Akker ◽  
Jorunn I.B. Bos

AbstractAphids are phloem-feeding insects that cause yield losses to crops globally. These insects feature complex life cycles, which in the case of many agriculturally important species involves the use of primary and secondary host plant species. Whilst host alternation between primary and secondary host can occur in the field depending on host availability and the environment, aphid populations maintained as laboratory stocks generally are kept under conditions that allow asexual reproduction by parthenogenesis on secondary hosts. Here, we used Myzus cerasi (black cherry aphid) to assess aphid transcriptional differences between populations collected from primary hosts in the field and those adapted to secondary hosts under controlled environment conditions. Adaptation experiments of M. cerasi collected from local cherry tress to reported secondary host species resulted in low survival rates. Moreover, aphids were unable to survive on secondary host Land cress, unless first adapted to another secondary host, cleavers. Transcriptome analyses of populations collected from primary host cherry in the field and the two secondary host plant species in a controlled environment showed extensive transcriptional plasticity to a change in host environment, with predominantly genes involved in redox reactions differentially regulated. Most of the differentially expressed genes across the M. cerasi populations from the different host environments were duplicated and we found evidence for differential exon usage. In contrast, we observed only limited transcriptional to a change in secondary host plant species.


Insects ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 197 ◽  
Author(s):  
Łukowski ◽  
Janek ◽  
Baraniak ◽  
Walczak ◽  
Karolewski

Recently in Poland, cases of host expansion have frequently been observed in the typically monophagous bird-cherry ermine moth (Yponomeuta evonymella), which has moved from its native host plant, bird cherry (Prunus padus), to a new, widely distributed plant that is invasive in Europe, black cherry (P. serotina). We attempted to verify the reasons behind this host change in the context of the enemy-free space hypothesis by focusing on parasitoids attacking larval Y. evonymella on one of three host plant variants: The primary host, P. padus; initially P. padus and later P. serotina (P. padus/P. serotina); or the new host, P. serotina. This experiment investigated if changing the host plant could be beneficial to Y. evonymella in terms of escaping from harmful parasitoids and improving survival rate. We identified nine species of parasitoids that attack larval Y. evonymella, and we found that the number of parasitoid species showed a downward trend from the primary host plant to the P. padus/P. serotina combination to the new host plant alone. We observed a significant difference among variants in relation to the percentage of cocoons killed by specific parasitoids, but no effects of non-specific parasitoids or other factors. Total mortality did not significantly differ (ca. 37%) among larval rearing variants. Changing the host plant caused differences in the structure of the parasitoid complex of Y. evonymella but did not improve its survival rate. This study does not indicate that the host expansion of Y. evonymella is associated with the enemy-free space hypothesis; we therefore discuss alternative scenarios that may be more likely.


Zootaxa ◽  
2008 ◽  
Vol 1728 (1) ◽  
pp. 1 ◽  
Author(s):  
KARL N. MAGNACCA ◽  
DAVID FOOTE ◽  
PATRICK M. O’GRADY

The Hawaiian Drosophilidae is one of the best examples of rapid speciation in nature. Nearly 1,000 species of endemic drosophilids have evolved in situ in Hawaii since a single colonist arrived over 25 million years ago. A number of mechanisms, including ecological adaptation, sexual selection, and geographic isolation, have been proposed to explain the evolution of this hyperdiverse group of species. Here, we examine the known ecological associations of 326 species of endemic Hawaiian Drosophilidae in light of the phylogenetic relationships of these species. Our analysis suggests that the long-accepted belief of strict ecological specialization in this group does not hold for all taxa. While many species have a primary host plant family, females will also oviposit on non-preferred host plant taxa. Host shifting is fairly common in some groups, especially the grimshawi and modified mouthparts species groups of Drosophila, and the Scaptomyza subgenus Elmomyza. Associations with types of substrates (bark, leaves, flowers) are more evolutionarily conserved than associations with host plant families. These data not only give us insight into the role ecology has played in the evolution of this large group, but can help in making decisions about the management of rare and endangered host plants and the insects that rely upon them for survival.


1998 ◽  
Vol 88 (3) ◽  
pp. 343-349 ◽  
Author(s):  
R.H.J. Verkerk ◽  
K.R. Neugebauer ◽  
P.R. Ellis ◽  
D.J. Wright

AbstractLaboratory-based experiments are presented involving two aphid sepcies (Myzus persicae Sulzer, a generalist and Brevicoryne brassicae Linnaeus, a crucifer specialist), and the predatory gall midge, Aphidoletes aphidimyza Rondani, on three cultivars of common cabbage Brassica oleracea var. capitata cv. Derby Day (green-leaved), Minicole (green-leaved) and Ruby Ball (red-leaved). In a laboratory-based tritrophic system including both species of aphid, the three cabbage cultivars and A. aphidimyza, predator both species of aphid, the three feeding on M. persicae or B. brassicae on cv. Derby Day, while growth was slowest separate experiment, A. asphidimyza larva feeding on B. brassicae on each of the three cultivars were significantly smaller and consumed less aphid fresh weight when maintained outdoors (mean temperature = 13.5°C) compared with a constant environment room (20°C). However, in this latter experiment under neither regime were differeneces in predator growth or consumption significant between cultivars. Effects of selective insecticides (pirimicarb and a neem seed kernel extract, NeemAzal-T/SR) on bitrophic (aphid-host plant) interactions were also investigated in the laboratory. A pirimicarb dose equating to c. 15% of the recommended field concentration caused equivalent toxicity of M. persicae on cv. Minicole compared with aphids treated with a three-fold greater dose and reared on cv. Derby Day. Cultivar-mediated differences in aphid mortality caused by the neem extract when tested for systemic and translaminar activity were not apparent. The results are discussed in relation to ways in which host plant selection, selective insecticides and biological control could potentially be manipulated and optimized in aphid management system on brassica crops.


2020 ◽  
Vol 25 (3) ◽  
pp. 478-485
Author(s):  
Yudi Riadi FanggidaE ◽  
Impron Impron ◽  
Tania June

The primary host of sandalwood seeds (Santalum album L.) which is widely used in the nursery process is Alternanthera sp. However, the local name given to this primary host is same as that given to Portulaca sp. The same local name for these two-different species may cause mistakes in the use of the primary host during the cultivating process of sandalwood. Meanwhile, the ability of the Portulaca sp. as the primary host is unknown. Information about the right radiation intensity of the sandalwood seedling is still limited. The study aims to analyze the growth of sandalwood seedlings grown with primary host of Alternanthera sp. and Portulaca sp. at different radiation intensities. The completely randomized design with two treatments factor were used, namely differences in shade levels (without shade, 25, 50, and 75%) and differences in the types of primary hosts. The result showed that the primary hosts of Alternanthera sp. have the best growth for sandalwood seeds compared to sandalwood seedlings planted with Portulaca sp. The shading must be adjusted to the type of primary host. Sandalwood seeds grown with Alternanthera sp. as primary hosts grow best at 50% and 75% paranet shade conditions, in radiation range of 9.86–12.17 MJ/m2/day. Sandalwood seeds planted with Portulaca sp. as a primary host grow best in 25% paranet shade, that is at average radiation of 13.62 MJ/m2/day. The use of Alternanthera sp. and shade provision (50–75%) is highly recommended in sandalwood seedlings.   Keywords: haustoria, hemiparasite, primary host plant, sandalwood, symbiosis


2021 ◽  
Author(s):  
Hong-Yuan Wei ◽  
Yu-Xian Ye ◽  
Hai-Jian Huang ◽  
Ming-Shun Chen ◽  
Zi-Xiang Yang ◽  
...  

AbstractThe horned gall aphid Schlechtendalia chinensis, is an economically important insect that induces galls valuable for medicinal and chemical industries. S. chinensis manipulates its host plant to form well-organized horned galls during feeding. So far, more than twenty aphid genomes have been reported; however, all of those are derived from free-living aphids. Here we generated a high-quality genome assembly of S. chinensis, representing the first genome sequence of a galling aphid. The final genome assembly was 280.43 Mb, with 97% of the assembled sequences anchored into thirteen chromosomes. S. chinensis presents the smallest aphid genome size among available aphid genomes to date. The contig and scaffold N50 values were 3.39 Mb and 20.58 Mb, respectively. The assembly included 96.4% of conserved arthropod and 97.8% of conserved Hemiptera single-copy orthologous genes based on BUSCO analysis. A total of 13,437 protein-coding genes were predicted. Phylogenomic analysis showed that S. chinensis formed a single clade between the Eriosoma lanigerum clade and the Aphidini+Macrosiphini aphid clades. In addition, salivary proteins were found to be differentially expressed when S. chinensis underwent host alternation, indicating their potential roles in gall formation and plant defense suppression. A total of 36 cytochrome P450 genes were identified in S. chinensis, considerably fewer compared to other aphids, probably due to its small host plant range. The high-quality S. chinensis genome assembly and annotation provide an essential genetic background for future studies to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.


Sign in / Sign up

Export Citation Format

Share Document