Evaluating the simulation of a simple hydrology model using long-term soil moisture measurements in the Nebraska Sand Hills V. Sridhar, Research Assistant Professor

2005 ◽  
Author(s):  
V. Sridhar ◽  
Kenneth G Hubbard ◽  
David A Wedin
Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 15-17
Author(s):  
Shigeru Yao ◽  
Patchiya Phanthong

Professor Shigeru Yao and Dr Patchiya Phanthong are conducting highly collaborative research that is focused on improving mechanical technology for recycling plastics, as well as extending the shelf life of plastics, thus reducing plastic waste. The researchers are based at the Yao Laboratory, in the Department of Chemical Engineering, Fukuoka University, Japan. Phanthong is a Project Research Assistant Professor from the Research Institute for the Creation of Functional and Structural Materials working under the supervision of Yao. In addition to heading up the lab, Yao is also the lead for the NEDO (New Energy and Industrial Technology Development Organization) Advanced Research Program for Energy and Environmental Technologies. In their work, the researchers are collaborating with both industry and academia which is essential to its progression.


2020 ◽  
Author(s):  
Colton Byers ◽  
◽  
Cody Brown ◽  
Patrick Burkhart ◽  
Paul Baldauf ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2021 ◽  
Vol 13 (14) ◽  
pp. 2848
Author(s):  
Hao Sun ◽  
Qian Xu

Obtaining large-scale, long-term, and spatial continuous soil moisture (SM) data is crucial for climate change, hydrology, and water resource management, etc. ESA CCI SM is such a large-scale and long-term SM (longer than 40 years until now). However, there exist data gaps, especially for the area of China, due to the limitations in remote sensing of SM such as complex topography, human-induced radio frequency interference (RFI), and vegetation disturbances, etc. The data gaps make the CCI SM data cannot achieve spatial continuity, which entails the study of gap-filling methods. In order to develop suitable methods to fill the gaps of CCI SM in the whole area of China, we compared typical Machine Learning (ML) methods, including Random Forest method (RF), Feedforward Neural Network method (FNN), and Generalized Linear Model (GLM) with a geostatistical method, i.e., Ordinary Kriging (OK) in this study. More than 30 years of passive–active combined CCI SM from 1982 to 2018 and other biophysical variables such as Normalized Difference Vegetation Index (NDVI), precipitation, air temperature, Digital Elevation Model (DEM), soil type, and in situ SM from International Soil Moisture Network (ISMN) were utilized in this study. Results indicated that: 1) the data gap of CCI SM is frequent in China, which is found not only in cold seasons and areas but also in warm seasons and areas. The ratio of gap pixel numbers to the whole pixel numbers can be greater than 80%, and its average is around 40%. 2) ML methods can fill the gaps of CCI SM all up. Among the ML methods, RF had the best performance in fitting the relationship between CCI SM and biophysical variables. 3) Over simulated gap areas, RF had a comparable performance with OK, and they outperformed the FNN and GLM methods greatly. 4) Over in situ SM networks, RF achieved better performance than the OK method. 5) We also explored various strategies for gap-filling CCI SM. Results demonstrated that the strategy of constructing a monthly model with one RF for simulating monthly average SM and another RF for simulating monthly SM disturbance achieved the best performance. Such strategy combining with the ML method such as the RF is suggested in this study for filling the gaps of CCI SM in China.


2021 ◽  
pp. 126582
Author(s):  
Nawaraj Shrestha ◽  
Aaron Mittelstet ◽  
Aaron R. Young ◽  
Troy E. Gilmore ◽  
David C. Gosselin ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 680
Author(s):  
Lei Wang ◽  
Wen Zhuo ◽  
Zhifang Pei ◽  
Xingyuan Tong ◽  
Wei Han ◽  
...  

Massive desert locust swarms have been threatening and devouring natural vegetation and agricultural crops in East Africa and West Asia since 2019, and the event developed into a rare and globally concerning locust upsurge in early 2020. The breeding, maturation, concentration and migration of locusts rely on appropriate environmental factors, mainly precipitation, temperature, vegetation coverage and land-surface soil moisture. Remotely sensed images and long-term meteorological observations across the desert locust invasion area were analyzed to explore the complex drivers, vegetation losses and growing trends during the locust upsurge in this study. The results revealed that (1) the intense precipitation events in the Arabian Peninsula during 2018 provided suitable soil moisture and lush vegetation, thus promoting locust breeding, multiplication and gregarization; (2) the regions affected by the heavy rainfall in 2019 shifted from the Arabian Peninsula to West Asia and Northeast Africa, thus driving the vast locust swarms migrating into those regions and causing enormous vegetation loss; (3) the soil moisture and NDVI anomalies corresponded well with the locust swarm movements; and (4) there was a low chance the eastwardly migrating locust swarms would fly into the Indochina Peninsula and Southwest China.


2000 ◽  
Vol 1 (4) ◽  
pp. 353-363 ◽  
Author(s):  
Todd M. Crawford ◽  
David J. Stensrud ◽  
Toby N. Carlson ◽  
William J. Capehart

Sign in / Sign up

Export Citation Format

Share Document