Effect of Soil Surface Submergence and a Water Table on Vegetative Growth and Nutrient Uptake of Corn

1992 ◽  
Vol 35 (4) ◽  
pp. 1173-1177 ◽  
Author(s):  
N. Ahmad ◽  
R. S. Kanwar ◽  
T. C. Kaspar ◽  
T. B. Bailey
2006 ◽  
Vol 41 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Nicolas Stämpfli ◽  
Chandra A. Madramootoo

Abstract Recent studies have shown subirrigation (SI) to be effective in reducing nitrate losses from agricultural tile drainage systems. A field study was conducted from 2001 to 2002 in southwestern Québec to evaluate the effect of SI on total dissolved phosphorus (TDP) losses in tile drainage. In an agricultural field with drains installed at a 1-m depth, a SI system with a design water table depth (WTD) of 0.6 m below the soil surface was compared with conventional free drainage (FD). Subirrigation increased drainage outflow volumes in the autumn, when drains were opened and water table control was interrupted for the winter in the SI plots. Outflows were otherwise similar for both treatments. Throughout the study, the TDP concentrations in tile drainage were significantly higher with SI than with FD for seven out of 17 of the sampling dates for which data could be analyzed statistically, and they were never found to be lower for plots under SI than for plots under FD. Of the seven dates for which the increase was significant, six fell in the period during which water table control was not implemented (27 September 2001 to 24 June 2002). Hence, it appears that SI tended to increase TDP concentrations compared with FD, and that it also had a residual effect between growing seasons. Almost one-third of all samples from the plots under SI exceeded Québec's surface water quality standard (0.03 mg TDP L-1), whereas concentrations in plots under FD were all below the standard. Possible causes of the increase in TDP concentrations in tile drainage with SI are high TDP concentrations found in the well water used for SI and a higher P solubility caused by the shallow water table.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 961
Author(s):  
Meryem Touzani ◽  
Ismail Mohsine ◽  
Jamila Ouardi ◽  
Ilias Kacimi ◽  
Moad Morarech ◽  
...  

The main landfill in the city of Rabat (Morocco) is based on sandy material containing the shallow Mio-Pliocene aquifer. The presence of a pollution plume is likely, but its extent is not known. Measurements of spontaneous potential (SP) from the soil surface were cross-referenced with direct measurements of the water table and leachates (pH, redox potential, electrical conductivity) according to the available accesses, as well as with an analysis of the landscape and the water table flows. With a few precautions during data acquisition on this resistive terrain, the results made it possible to separate the electrokinetic (~30%) and electrochemical (~70%) components responsible for the range of potentials observed (70 mV). The plume is detected in the hydrogeological downstream of the discharge, but is captured by the natural drainage network and does not extend further under the hills.


1981 ◽  
Vol 97 (3) ◽  
pp. 557-568 ◽  
Author(s):  
R. K. Belford

SUMMARYThe response of winter wheat cv. Maris Huntsman to waterlogging was studied in two experiments in soil columns outdoors. Winter waterlogging treatments increased nodal root production and the proportion of aerenchyma within roots, but caused chlorosis and premature senescence of leaves, and decreased tillering. For all treatments, grain losses were much less than expected from the extent of tiller loss in winter; losses after single waterlogging events ranged from 2% (after 47 days with the water-table at 5 cm) to 16% (after 80 days with the water-table at the soil surface). Yield losses after three waterloggings at the seedling, tillering and stem elongation stages of growth were additive, and totalled 19%. In many treatments, grain loss was associated with lighter individual grain weights, suggesting that the size of the root system or efficiency of water and nutrient uptake by roots at the later stages of growth may have been less after earlier waterlogging. The importance of nitrogen fertilizer in maintaining a satisfactory plant nitrogen status was shown when nitrogen was with held before a 3-week waterlogging treatment during stem elongation; tiller and floret survival was subsequently greatly restricted and grain yields decreased 22% below those of plants waterlogged at the same stage of growth but supplied with nitrogen.


2014 ◽  
Vol 11 (3) ◽  
pp. 577-599 ◽  
Author(s):  
M. Mezbahuddin ◽  
R. F. Grant ◽  
T. Hirano

Abstract. Seasonal variation in water table depth (WTD) determines the balance between aggradation and degradation of tropical peatlands. Longer dry seasons together with human interventions (e.g. drainage) can cause WTD drawdowns making tropical peatland C storage highly vulnerable. Better predictive capacity for effects of WTD on net CO2 exchange is thus essential to guide conservation of tropical peat deposits. Mathematical modelling of basic eco-hydrological processes under site-specific conditions can provide such predictive capacity. We hereby deploy a process-based mathematical model ecosys to study effects of seasonal variation in WTD on net ecosystem productivity (NEP) of a drainage affected tropical peat swamp forest at Palangkaraya, Indonesia. Simulated NEP suggested that the peatland was a C source (NEP ~ −2 g C m−2 d−1, where a negative sign represents a C source and a positive sign a C sink) during rainy seasons with shallow WTD, C neutral or a small sink (NEP ~ +1 g C m−2 d−1) during early dry seasons with intermediate WTD and a substantial C source (NEP ~ −4 g C m−2 d−1) during late dry seasons with deep WTD from 2002 to 2005. These values were corroborated by regressions (P < 0.0001) of hourly modelled vs. eddy covariance (EC) net ecosystem CO2 fluxes which yielded R2 > 0.8, intercepts approaching 0 and slopes approaching 1. We also simulated a gradual increase in annual NEP from 2002 (−609 g C m−2) to 2005 (−373 g C m−2) with decreasing WTD which was attributed to declines in duration and intensity of dry seasons following the El Niño event of 2002. This increase in modelled NEP was corroborated by EC-gap filled annual NEP estimates. Our modelling hypotheses suggested that (1) poor aeration in wet soils during shallow WTD caused slow nutrient (predominantly phosphorus) mineralization and consequent slow plant nutrient uptake that suppressed gross primary productivity (GPP) and hence NEP (2) better soil aeration during intermediate WTD enhanced nutrient mineralization and hence plant nutrient uptake, GPP and NEP and (3) deep WTD suppressed NEP through a combination of reduced GPP due to plant water stress and increased ecosystem respiration (Re) from enhanced deeper peat aeration. These WTD effects on NEP were modelled from basic eco-hydrological processes including microbial and root oxidation-reduction reactions driven by soil and root O2 transport and uptake which in turn drove soil and plant carbon, nitrogen and phosphorus transformations within a soil-plant-atmosphere water transfer scheme driven by water potential gradients. Including these processes in ecosystem models should therefore provide an improved predictive capacity for WTD management programs intended to reduce tropical peat degradation.


Author(s):  
Reem Ismail ◽  
Saeid Shafieiyoun ◽  
Riyadh Al Raoush ◽  
Fereidoun Rezanezhad

Most of the prediction theories regarding dissolution of organic contaminants in the subsurface systems have been proposed based on the static water conditions; and the influence of water fluctuations on mass removal requires further investigations. In this study, it was intended to investigate the effects of water table fluctuations on biogeochemical properties of the contaminated soil at the smear zone between the vadose zone and the groundwater table. An automated 60 cm soil column system was developed and connected to a hydrostatic equilibrium reservoir to impose the water regime by using a multi-channel pump. Four homogenized hydrocarbon contaminated soil columns were constructed and two of them were fully saturated and remained under static water conditions while another two columns were operated under water table fluctuations between the soil surface and 40 cm below it. The experiments were run for 150 days and relevant geochemical indicators as well as dissolved phase concentrations were analyzed at 30 and 50 cm below the soil surface in all columns. The results indicated significant difference in terms of biodegradation effectiveness between the smear zones exposed to static and water table fluctuation conditions. This presentation will provide an overview of the experimental approach, mass removal efficiency, and key findings.


Irriga ◽  
2001 ◽  
Vol 6 (2) ◽  
pp. 62-68
Author(s):  
Marcos Henrique Sias Silveira ◽  
Antonio Evaldo Klar

PRODUÇÃO DE MATÉRIA SECA E EVAPOTRANSPIRAÇÃO REAL DA AVEIA PRETA (Avena strigosa S.) EM SEIS NÍVEIS FREÁTICOS  Marcos Henrique Dias SilveiraAntonio Evaldo KlarDepartamento de Engenharia Rural –  Faculdade de Ciências Agronômicas – UnespBotucatu – SP  Cep: 18603-970Fone: (0xx14) 6802-7165 – [email protected]  1  RESUMO Para avaliar os efeitos de seis diferentes níveis freáticos na produção de matéria seca e na evapotranspiração real ou de cultura da aveia preta (Avena strigosa S.) foi conduzido um experimento em casa de vegetação, no Departamento de Engenharia Rural da FCA - Campus de Botucatu - UNESP.  Foram semeadas 21 sementes de aveia por vaso, construído de anéis de PVC, com diâmetro nominal de 0,15m x 0,07m de comprimento e alturas totais variando entre 0,21m e 0,91m, de modo a simular os efeitos de níveis freáticos de 0,17m, 0,31m, 0,45m, 0,59m, 0,73m e 0,87m de profundidade.  Após a emergência das plântulas procedeu-se ao desbaste,  deixando-se 8 plantas por vaso, com 06 repetições (seis vasos) para cada nível freático, totalizando 36 vasos em delineamento inteiramente casualizado.  Dados de evapotranspiração real foram coletados diariamente e computados semanalmente.  As plantas foram cortadas rente ao solo ao final da 12.ª semana após a semeadura.  Foram avaliadas as produções de matéria seca da parte aérea e do sistema radicular em cada nível freático.  Os resultados mostraram maior produção de matéria seca para o nível freático mais superficial (0,17m), com queda gradativa à medida que o nível freático se aprofundava. A evapotranspiração da cultura  mostrou a mesma tendência, variando entre 591,6 mm  no tratamento com nível freático a 0,17m de profundidade e 215,4 mm para o de 0,87m de profundidade. UNITERMOS: evapotranspiração, níveis freáticos, aveia preta.  SILVEIRA, M. H. D., KLAR, A. E.  DRY MATTER PRODUCTION AND EVAPOTRANSPIRATION OF OAT         ( Avena strigosa S.) UNDER  SEVERAL TABLE LEVELS.  2  ABSTRACT The aim of this study was to evaluate the influence of six different water table levels on yield and evapotranspiration of oat (Avena strigosa S.) .  21 seeds were sowed  per  pot, which was built with PVC rings (0.15m nominal diameter x 0.07m lenght).  6 water table levels were used: 0.17; 0.31; 0.45; 0.59; 0.73; and 0.87 m measured from the soil surface replicated  6  times.  The completely randomised design was used.  After seedling emergency, 8 plants were maintained  per  pot.  The evapotranspiration were daily measured from reservoirs connected to the pots.  The plants were cut at the soil surface level after 12 weeks from the sowing.The results showed greater dry matter production at the most superficial water table level with progressive decrease with water level distance from the soil surface.  The  evapotranspiration  showed  the  same tendency: the higher values occurred on the 0.17m water table (591.6 mm) until 0.87m water table (215.4 mm). KEYWORDS:  water table, evapotranspiration, Avena strigosa S.


1989 ◽  
Vol 25 (3) ◽  
pp. 349-355 ◽  
Author(s):  
S. S. Parihar ◽  
R. S. Tripathi

SUMMARYThe response of chickpea to irrigation and phosphorus was studied at Kharagpur in Eastern India. Irrigation scheduling was based on the ratio between irrigation water applied and cumulative pan evaporation (ID/CPE), and had little effect on dry matter accumulation. Increasing the frequency and amount of irrigation reduced the number and dry weight of nodules per plant, which increased to a maximum 70 days after sowing and then declined. Irrigation significantly reduced grain yield as a result of excessive vegetative growth at the expense of pod formation. Application of phosphorus promoted nodulation and increased both nodule dry weight and the concentration of N, P and K in grain and stover. Uptake of N, P and K by the crop was also increased.


1991 ◽  
Vol 31 (3) ◽  
pp. 357 ◽  
Author(s):  
RJ Jarvis ◽  
MDA Bolland

Five field experiments with lupins (Lupinus angustifolius) measured the effectiveness, for production, of 4 superphosphate placements either: (i) drilled with the seed to a depth of 4 or 5 cm; (ii) applied to the soil surface (topdressed) before sowing; or (iii) banded 2.5-5 cm and 7.5-8 cm below the seed while sowing. Levels of applied phosphate (P) from 0 to 36 kg P/ha were tested. In all experiments lupin grain yield responded to the highest level of superphosphate applied. At this P level, the average grain yield from all trials was 1.16 t/ha for the deepest banded treatment. This was 0.38 t/ha (49%) better than P drilled with the seed, and 0.62 t/ha (115%) better than P topdressed. Relative to superphosphate drilled with the seed and regardless of the lupin cultivar or the phosphate status of the soil, the effectiveness of superphosphate was increased by 10-90% by banding below the seed, and decreased by 30-60% by topdressing. Increasing the levels of superphosphate drilled with the seed generally reduced the density of seedlings and reduced early vegetative growth, probably due to salt or P toxicity. However, during the growing season, the plants treated with high levels of superphosphate recovered, so that eventually yields of dried tops and grain responded to increasing superphosphate drilled with the seed. In each experiment there was a common relationship between yield and P content in lupin tissue, regardless of how the superphosphate was applied, suggesting that lupins responded solely to P, and other factors did not alter yield. We recommend that farmers band superphosphate 5-8 cm below the seed while sowing, rather than continue the present practices of either drilling the fertiliser with the seed, or topdressing it before sowing.


2008 ◽  
Vol 72 (2) ◽  
pp. 412-423 ◽  
Author(s):  
B. Augeard ◽  
L. M. Bresson ◽  
S. Assouline ◽  
C. Kao ◽  
M. Vauclin

Sign in / Sign up

Export Citation Format

Share Document