Lupin grain yields and fertiliser effectiveness are increased by banding superphosphate below the seed

1991 ◽  
Vol 31 (3) ◽  
pp. 357 ◽  
Author(s):  
RJ Jarvis ◽  
MDA Bolland

Five field experiments with lupins (Lupinus angustifolius) measured the effectiveness, for production, of 4 superphosphate placements either: (i) drilled with the seed to a depth of 4 or 5 cm; (ii) applied to the soil surface (topdressed) before sowing; or (iii) banded 2.5-5 cm and 7.5-8 cm below the seed while sowing. Levels of applied phosphate (P) from 0 to 36 kg P/ha were tested. In all experiments lupin grain yield responded to the highest level of superphosphate applied. At this P level, the average grain yield from all trials was 1.16 t/ha for the deepest banded treatment. This was 0.38 t/ha (49%) better than P drilled with the seed, and 0.62 t/ha (115%) better than P topdressed. Relative to superphosphate drilled with the seed and regardless of the lupin cultivar or the phosphate status of the soil, the effectiveness of superphosphate was increased by 10-90% by banding below the seed, and decreased by 30-60% by topdressing. Increasing the levels of superphosphate drilled with the seed generally reduced the density of seedlings and reduced early vegetative growth, probably due to salt or P toxicity. However, during the growing season, the plants treated with high levels of superphosphate recovered, so that eventually yields of dried tops and grain responded to increasing superphosphate drilled with the seed. In each experiment there was a common relationship between yield and P content in lupin tissue, regardless of how the superphosphate was applied, suggesting that lupins responded solely to P, and other factors did not alter yield. We recommend that farmers band superphosphate 5-8 cm below the seed while sowing, rather than continue the present practices of either drilling the fertiliser with the seed, or topdressing it before sowing.

1996 ◽  
Vol 36 (4) ◽  
pp. 479 ◽  
Author(s):  
DC Lewis ◽  
WA Hawthorne

Faba beans (Vicia faba cv. Fiord) were grown in 1 glasshouse and 3 field experiments to calibrate the critical concentrations of phosphorus (P) and zinc (Zn) in selected plant tissues for vegetative and grain yields. In the field experiments, responses in grain yield to soil-applied P were between 0.5 and 0.8 t/ha (20-25%) at sites with extractable Colwell soil P concentrations of 20 and 23 mg/kg. Similarly, grain yields were increased by 0.6-1.2 t/ha (20-30%) from the application of either soil-applied or foliar Zn. These field responses to Zn only occurred if P fertiliser was applied at sowing. Maximum yields were obtained by either applying about 2 kg Zn/ha to the soil at sowing, or 500 g Zn/ha as a foliar spray, 8 weeks after sowing. In field experiments, critical P concentrations in the youngest open leaf during vegetative growth for prediction of maximum grain yield in the field, remained constant over a 10-week growing period. A critical nutrient range of 0.40-0.41% is proposed. However, critical concentrations of P in whole top for maximum grain yield, declined from 0.40 to 0.27% over the same growing period. For bean seed collected at harvest, a critical concentration of 0.36% P for maximum grain yield was derived. Critical concentrations of Zn during vegetative growth for prediction of maximum grain yield, derived in both glasshouse and field experiments, were very similar in youngest open leaf and whole top, and no significant decline with plant age was observed; a critical nutrient range of 19-24 mg/kg is proposed. For seed collected at harvest, a critical nutrient range for diagnosis of Zn deficiency of 13-15 mg/kg is suggested.


1999 ◽  
Vol 39 (5) ◽  
pp. 595 ◽  
Author(s):  
R. F. Brennan

The effectiveness of manganese fertiliser for seed (grain) production of lupin (Lupinus angustifolius L.) was measured in 31 field experiments when manganese sulfate, applied at 0–15 kg manganese/ha was either: (i) placed (drilled) with the seed at about 5 cm; (ii) applied to the soil surface (topdressed) before sowing; or (iii) banded about 8 cm below the seed (13 cm below the soil surface) while sowing. Relative to the nil-manganese treatment, additions of manganese fertiliser increased yields by 190–1870 kg seed/ha. Increases were greatest for manganese banded below the seed (average increase 1100 kg seed/ha) followed by manganese drilled with the seed (average increase 845 kg/ha), while the topdressed manganese fertiliser was least effective (average increase 670 kg/ha). Additions of manganese fertiliser did not affect plant density (measured 1 month after sowing) or the yield of dried shoots. A concentration of manganese in the main stem of about 20 mg/kg was a reliable predictor of manganese deficiency in lupin grain yield. It is therefore recommended that manganese fertiliser is banded about 8 cm below the seed while sowing lupin rather than the present practices of either drilling the manganese fertiliser with the seed or topdressing it before sowing.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 703-707 ◽  
Author(s):  
Amadou Diarra ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Field experiments were conducted to investigate methods of controlling red rice (Oryza sativaL. ♯ ORYSA) in drill-seeded rice (O. sativa). Treatments included the rice cultivar ‘Mars', coated with calcium peroxide (CaO2) at 40% (w/w) and a crop protectant, R-33865 (O,O-diethyl-O-phenyl phosphorothioate) at 0.5 and 1% (v/w). Molinate (S-ethyl hexahydro-1H-azepine-1-carbothioate) at 6.7 kg ai/ha was applied preplant incorporated (ppi). The land was flooded (2.5 to 5 cm deep) after seeding with rice (100 kg/ha, 2.5 cm deep), and the water was maintained throughout the growing season. CaO2, with or without molinate, increased rice grain yield 50% and increased rice culm density fivefold above untreated rice. Molinate applied ppi controlled 96% of the red rice. Rice seed coated with only CaO2or with CaO2plus R-33865 at 0.5%, each combined with ppi molinate, produced 5690 and 6030 kg/ha of grain, respectively. These high yields were associated with red rice control by molinate and good stands of rice provided by O2supplied by CaO2. R-33865 applied to rice seed at 1% (v/w) injured rice by reducing rice culm densities 41%, compared with rice without protectant.


1997 ◽  
Vol 77 (2) ◽  
pp. 207-213 ◽  
Author(s):  
G. Opoku ◽  
T. J. Vyn

Corn (Zea mays L.) yield reduction following winter wheat (Triticum aestivum L.) in no-till systems prompted a study on the effects of tillage and residue management systems on corn growth and seedbed conditions. Four methods for managing wheat residue (all residue removed, straw baled after harvest, straw left on the soil surface, straw left on the soil surface plus application of 50 kg ha−1N in the fall) were evaluated at two tillage levels: fall moldboard plow (MP) and no-till (NT). No-till treatments required at least 2 more days to achieve 50% corn emergence and 50% silking, and had the lowest corn biomass at 5 and 7 wk after planting. Grain yield was similar among MP treatments and averaged 1.1 t ha−1 higher than NT treatments (P < 0.05). Completely removing all wheat residue from NT plots reduced the number of days required to achieve 50% corn emergence and increased grain yields by 0.43 and 0.61 t ha–1 over baling and not baling straw, respectively, but still resulted in 8% lower grain yields than MP treatments. Grain yield differences among MP treatments were insignificant regardless of the amount of wheat residue left on the surface or N application in the fall. Early in the growing season, the NT treatments where residue was not removed had lower soil growing degree days (soil GDD) compared with MP (baled) treatment, and higher soil moisture levels in the top 15 cm compared with all other treatments. The application of 50 kg N ha−1 in the fall to NT (not baled) plots influenced neither the amount of wheat residue on the soil surface, nor the soil NO3-N levels at planting. Our results suggest that corn response in NT systems after wheat mostly depends on residue level. Key words: Winter wheat, straw management, no-till, corn, soil temperature, soil moisture


2010 ◽  
Vol 61 (11) ◽  
pp. 892 ◽  
Author(s):  
S. G. L. Kleemann ◽  
G. S. Gill

A 3-year field study was undertaken to investigate the effect of row spacing on vegetative growth, grain yield and water-use efficiency of wheat. All 3 years of the study experienced 21–51% below-average rainfall for the growing season. Widening row spacing led to reduced biomass and tillers on per plant basis which could be related to the reduction in light interception by the wheat canopy in the wide rows which in turn could have reduced assimilate production. Reduction in vegetative growth in 54-cm rows translated into a significant reduction in grain yield which was strongly associated (r2 = 0.71) with the loss of spike density. The pattern of crop water use (evapotranspiration, ET) during the growing season was very similar for the three row-spacing treatments. However, there was some evidence for slightly lower ET (~5%) in 54-cm rows in two growing seasons. More importantly, there was no evidence for increased ET during the post-anthesis phase in wide rows as has been speculated by some researchers. Over the 3 years of the study, grain yield declined by 5–8% as row spacing increased from 18 to 36 cm and by a further 12–20% as row spacing increased from 36 to 54 cm. There was a consistent decline in water-use efficiency for grain (WUEG) with increasing row spacing over the 3 years. WUEG declined by 6–11% as crop spacing increased from 18 to 36 cm and declined further by 12–15% as row spacing increased to 54 cm. Lower light interception at wider row spacing could have reduced assimilate production by wheat as well as increased soil evaporation due to lower shading of the soil surface in more open canopies. Growers adopting wider row spacing on these relatively heavy textured soils are likely to experience some reduction in grain yield and WUEG. However, some growers may be prepared to accept a small yield penalty from intermediate row spacing as a trade-off for increased stubble retention and soil health.


2007 ◽  
Vol 58 (7) ◽  
pp. 690 ◽  
Author(s):  
R. H. Harris ◽  
J. R. Hirth ◽  
M. C. Crawford ◽  
W. D. Bellotti ◽  
M. B. Peoples ◽  
...  

A field experiment located in southern New South Wales compared the component yields of cereal–lucerne companion crops (cereals sown into established lucerne) with the yields of cereal and lucerne monocultures. In-crop lucerne herbicide suppression, cereal crop types (wheat and barley), and top-dressed nitrogen (N) were evaluated for the potential to improve cereal production in the presence of lucerne. Plant populations and biomass, cereal grain yields, and grain quality (protein, screenings, and contamination) were measured. Over the 3-year study, cereals sown into established lucerne (4 years of age at the commencement of the experiment) yielded 17% less (P < 0.05) grain than the cereal monoculture. Companion cropping also resulted in a 71% reduction (P < 0.05) in lucerne biomass over the growing season compared with the lucerne monoculture, but a 3-fold (P < 0.05) increase in total (cereal and lucerne) biomass production. There were no differences between wheat and barley crops in the presence of lucerne, although extensive lodging in the 2003-barley monoculture did result in a significant main treatment (+/0 lucerne and +/0 in-crop lucerne suppression) × crop type (wheat and barley) interaction in grain yield, but not cereal biomass. N top-dressed after tillering onto cereal–lucerne companion crops did not increase grain yield, although it did increase cereal biomass in 2003. Whilst in-crop lucerne suppression did not increase cereal grain yields, it did increase (P < 0.05) cereal biomass and reduced lucerne biomass at cereal maturity and contamination (lucerne pods and flowers) of the cereal grain. However, this practice reduced (P < 0.05) lucerne populations, and therefore potentially threatens the longer term viability of lucerne stands so more research is recommended to develop less detrimental strategies for achieving effective in-crop lucerne suppression. This study combined with results from others, suggests that rainfall was a major factor determining cereal responses in the presence of lucerne, and although there were responses in cereal biomass to additional N and herbicide suppression, these strategies appear to only have potential under favourable growing-season conditions.


1980 ◽  
Vol 60 (1) ◽  
pp. 61-68 ◽  
Author(s):  
J. M. DESCHENES ◽  
C. A. ST-PIERRE

On a St-André sandy loam and on a Kamouraska clay, the effect of soil temperature on oats (Avena sativa L.) was measured in the greenhouse using a system described by Deschênes et al. in 1974 and in the field, using two dates of seeding. The effect of weeds was measured by using un weeded and hand-weeded treatments. In the greenhouse, cool soil temperatures have delayed maturity and decreased straw and grain yields as well as total phytomass of oats on the two soil types. The dry weight of weeds in un weeded pots increased slightly. The effect of hand-weeding on oats was especially noticeable on the St-André sandy loam where three times as many weeds were observed. The straw yield and the total phytomass of oats were higher in the field experiment following an early seeding of oats on both soil types. On the other hand, grain yield was lower on plots seeded early and located on St-André sandy loam while the opposite was true on Kamouraska clay. The dry weight of weeds was lower on unweeded plots seeded early. The weeds reduced straw and grain yields on the St-André sandy loam but had no effect on Kamouraska clay because of the low weed infestation on the latter. The greenhouse and field experiments suggest that soil temperature is not the main factor in explaining the increase in grain yield observed with early-seeded cereals.


1998 ◽  
Vol 12 (3) ◽  
pp. 537-541 ◽  
Author(s):  
David L. Jordan ◽  
J. Andrew Kendig

Field experiments were conducted to compare barnyardgrass control and rice grain yield following a single postemergence (POST) application of propanil plus clomazone with single or repeat POST applications of propanil alone or single POST applications of propanil plus pendimethalin, molinate, quinclorac, or thiobencarb. In four of 10 experiments, propanil plus clomazone controlled barnyardgrass better than single or repeat applications of propanil alone or single applications of propanil plus pendimethalin, molinate, quinclorac, or thiobencarb. The most consistent increase in rice yield over a single application of propanil occurred where clomazone was applied in mixture with propanil.


2015 ◽  
pp. 71-82
Author(s):  
E. V. Shein ◽  
E. B. Skvortsova ◽  
S. S. Panina ◽  
A. B. Umarova ◽  
K. A. Romanenko

The results of field experiments conducted on the medium loamy agro soddy-podzolic soil showed that due to the hydraulic head of water at the soil surface the moisture movement occurs predominantly through migration ways that deteriorate the hydro-depositary properties of soils. The moisture movement was studied by a special method performed in two soil monoliths identical in size (42 cm in diameter and 60 cm high). The monolith walls were covered by a film, foamed and buried with the view of avoiding the lateral water loss. Both monoliths were simultaneously saturated with water: one of them was under a constant head of water in 5 cm, the other monolith was watered by fine-dispersed sprinkler without the formation of the water layer at the soil surface. The study was aimed at modeling the water movement under conditions of small headed infiltration and without the head of water as well as comparing the calculated and experimental data with the view of assessing the most adequate experimental provision of the model - the major hydrophysical characteristics obtained by empiric methods in the experiment or those calculated on the basis of hydrological constants and soil properties (pedo-transmitting functions). It seemed reasonable to establish that the experimental provision of the model can be shown in the following order: the use of regional pedo-transmitting functions provides better results as compared to the major hydrophysical characteristics, the latter being obtained by the method of tensiometers and capillarometers is better than the pedo-transmitting characteristics used the particle-size distribution as a predictor in Agrotool program (ROSETTA database) as well as those obtained by Voronin’s “secants”.


Sign in / Sign up

Export Citation Format

Share Document