Comparison of surface and subsurface water distribution uniformities under center pivot irrigation system for Sugarcane in Colombia

2019 ◽  
Author(s):  
Christian J Mendoza ◽  
Javier A Carbonell ◽  
Jhon J Lasso
Sugar Tech ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 1032-1037
Author(s):  
Christian José Mendoza ◽  
Javier Alí Carbonell ◽  
Jhon Jairo Lasso

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1675
Author(s):  
Hussein Al-Ghobari ◽  
Ahmed Z. Dewidar

The center pivot irrigation system is a type of irrigation technology used to apply water effectively and uniformly over a wide variety of areas and topographies. These irrigation systems’ uniformity of water application greatly affects water use, energy consumption, and crop production. Performance tests of the standard lateral galvanized and modified polyethylene plastic pipes in the center pivot irrigation systems were conducted in different regions of Saudi Arabia. Water distribution depths along the laterals, coefficient of uniformity (CU), and distribution uniformity of the low quarter (DU) were determined. The results revealed that profiles of water distribution ranged from 4 to 14 mm for the standard-center pivot irrigation systems, while those for the modified-center pivot irrigation systems ranged from 6.5 to 50 mm. Standard-center pivot irrigation systems’ CU values ranged from 74 to 90%, with an average of 86%. In comparison, the modified-center pivot irrigation systems’ CU values ranged from 62 to 83%, with an average of 78%. The DU values ranged from 60 to 82% for the standard-center pivot irrigation systems, with an overall average of 77%. For the modified-center pivot irrigation systems, the DU values, in contrast, ranged from 31 to 75%, with an average of 65%. Thus, the accuracy and uniformity of the standard-center pivot irrigation systems are superior to those that have been modified. Additionally, a statistical model was developed to investigate the relationship between the water losses and the main climatic factors under field operating conditions. Therefore, the study results are expected to draw attention to standard lateral pipes’ value on the one hand and demonstrate the detrimental consequences of growers’ incorrect practices in pivot irrigation systems, motivating them to take strong action against these activities, on the other hand.


1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


Author(s):  
Amin Seyedzadeh ◽  
Amir Panahi ◽  
Eisa Maroufpoor ◽  
Abdolmajid Liaghat

1997 ◽  
Vol 13 (2) ◽  
pp. 235-239 ◽  
Author(s):  
M. Omary ◽  
C. R. Camp ◽  
E. J. Sadler

2017 ◽  
Vol 7 (4) ◽  
pp. 421 ◽  
Author(s):  
Jian Jiao ◽  
Yadong Wang ◽  
Liliang Han ◽  
Derong Su

2021 ◽  
Vol 13 (3) ◽  
pp. 1107
Author(s):  
Martina Slámová ◽  
Juraj Hreško ◽  
František Petrovič ◽  
Henrich Grežo

Water meadows or flooded meadows are known from many European countries. A historical irrigation system—catchworks—was identified in only one locality in Slovakia. This article brings a methodical approach to the identification of catchworks on mountain slopes. The main aim was to delineate catchworks using terrain and land use geospatial data intended to supplement existing data on catchworks from the field survey. The identification of shallow and narrow channels in the field is difficult, and their detection in a digital terrain model (DTM) and orthomosaic photos is also challenging. A detailed DTM elaborated from laser scanning data was not available. Therefore, we employed break lines of a Triangulated Irregular Network (TIN) model created by EUROSENSE Ltd. 2017, Bratislava, Slovakia. to determine microtopographic features on mountain slopes. Orthomosaics with adjusted red (R) green (G) and blue (B) band thresholds (digital numbers) in a time sequence of 16 years (2002–2018) and the Normalized Green-Red Difference Index (NGRDI) (2018) determined vital herbaceous vegetation and higher biomass. In both cases, the vegetation inside wet functional catchworks was differently coloured from the surroundings. In the case of dry catchworks, the identification relied only on microtopography features. The length of catchworks mapped in the field (1939.12 m; 2013) was supplied with potential catchworks detected from geospatial data (2877.18; 2018) and their total length in the study area increased above 59.74% (4816.30 m). Real and potential catchworks predominantly occupied historical grassland (meadows and pastures) (1952–1957) (4430.31; 91.99%). This result corresponds with the findings of foreign studies referring that catchworks on mountain slopes were related to livestock activities. They are important elements of sustainable land use with a water retention function in traditional agricultural landscapes.


Irriga ◽  
2009 ◽  
Vol 14 (4) ◽  
pp. 492-503 ◽  
Author(s):  
Leonardo Pretto de Azevedo ◽  
João Carlos Cury Saad

Irrigação de pastagens via pivô central, na bovinocultura de corte.  Leonardo Pretto de Azevedo1; João Carlos Cury Saad21 Instituto Federal de São Roque, São Roque, SP, [email protected] de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, SP,   1 RESUMO          O presente trabalho teve como objetivo apresentar o sistema de irrigação de pastagens via pivô central na bovinocultura de corte brasileira, bem como discutir a viabilidade econômica desta prática em diferentes regiões do país. Foram apresentados fatores importantes na produção de massa seca de forrageiras tropicais, como temperatura, radiação solar, adubação e água. Também foram apresentadas as vantagens e desvantagens do sistema, bem como uma breve discussão de sua viabilidade econômica. Concluiu-se que a irrigação de pastagens pode ser uma técnica economicamente viável para regiões específicas do Brasil, considerando-se os fatores envolvidos e esclarecendo que apenas o fornecimento de água às culturas não resolve o problema da estacionalidade durante o inverno. UNITERMOS: pivô central, forrageiras, viabilidade econômica  AZEVEDO, L. P.; SAAD, J. C. C. Pasture irrigation under center pivot for beef cattle.  2 ABSTRACT          The aims of this work were to show the pasture irrigation system by center pivot with Brazilian cattle and to discuss the economic feasibility of this technique in different regions of the country. Important parameters to dry matter production of tropical forage plants, as temperature, solar radiation, fertilization, and water requirement were shown Also, the system advantages and disadvantages and a discussion about economic feasibility of this technique were presented. It was concluded that pasture irrigation is a feasible and economical technique to some specific Brazilian regions, depending on appropriated parameters. This work also concludes that just water supply is not enough to assure forage production avoiding reduction in dry production in the winter. KEYWORDS: center pivot, pasture, economic feasibility


2016 ◽  
Vol 19 ◽  
pp. 25-30
Author(s):  
Basistha Adhakari

Many large irrigation projects in Nepal operate under command area development works that emphasize on-farm water distribution and management. These projects have specific design characteristics that were planned to comply with available water resources, climatic conditions, soil type, and water distribution technology. The water distribution technologies differ based on the design needs of each individual project and the design preferences of various foreign consulting firms. This article focuses on the issues of planning and designing water distribution systems of large irrigation systems at the irrigation service delivery level. The layout planning of an irrigation system is an important aspect of design for water distribution, typically guided by hierarchical system. This article also highlights the existing canal hierarchy of these systems and their appropriateness for efficient water distribution. Furthermore, the appropriateness of the structured system is also examined in the Sunsari Morang Irrigation Project. The article concluded with some suggestions for planning and designing command area development works of forthcoming large irrigation projects such as the Sikta Irrigation Project, the Babai Irrigation Project, and the Mahakali Irrigation Project Stage-III.HYDRO Nepal JournalJournal of Water, Energy and EnvironmentIssue: 19Page: 25-30


2019 ◽  
Vol 8 (2) ◽  
pp. 290
Author(s):  
Yuda Arnanda ◽  
I Wayan Tika ◽  
Ida Ayu Luh Gede Bintang Madrini

Sistem subak adalah merupakan salah satu bentuk sistem irigasi yang mampu mengakomodasikan dinamika sistem sosio-teknis masyarakat setempat. Air irigasi dikelola dengan prinsip-prinsip keadilan, keterbukaan, harmoni dan kebersamaan, melalui suatu organisasi yang fleksibel yang sesuai dengan kepentingan masyarakat. Sistem irigasi erat kaitannya tentang pendistribusian air irigasi pada subak yang berdasarkan luas lahan. Salah satu aspek yang akan dinilai dalam sistem irigasi adalah Rasio Prestasi Manajemen (RPM) irigasi Tujuan penelitian ini adalah untuk mengetahui klasifikasi RPM di suatu subak dengan pemberian skor pada masing-masing klasifikasi RPM. Perolehan data sekunder dilakukan dengan metode survey, pengamatan secara langsung dan pengukuran. Data yang telah dikumpulkan selanjutnya akan dianalisis menggunakan metode Rasio Prestasi Manajemen (RPM) Irigasi. RPM irigasi setiap subak dinilai dengan menggunakan empat rentang nilai yaitu Baik bila 0.75 < RPM <1.25, Cukup bila 0.60 < RPM < 0.75 atau 1.25 < RPM < 1.40, Kurang 0.40 < RPM< 0.60 atau 1.40 <RPM<1.60 dan Sangat kurang bila RPM < 0.40 atau RPM >1.60 Hasil metode analisis rasio prestasi manajemen irigasi pada distribusi air di subak diperoleh RPM daerah hulu yaitu Pama Palian, Aya I dan Aya II memiliki RPM yang Baik yaitu rata-rata 100%. Ketersediaan air yang begitu melimpah karena subak daerah hulu, subak yang pertama kali mengambil air di daerah irigasi. Dan yang paling penting adalah sistim pengaturan pemberian air yang sudah optimal. Untuk subak daerah tengah RPM sedikit berbeda dengan di daerah hulu. Rata-rata RPM daerah irigasi tengah yang mempunyai kreteria Cukup yaitu sebesar 15,5% sedangkan Baik 84,5%. Untuk daerah irigasi tengah yang memiliki kriteria RPM cukup dengan nilai 15,5% disebabkan oleh pendistribusian air tidak seoptimal seperti daerah irigasi hulu. Untuk Subak daerah irigasi hilir rata-rata RPM secara keseluruhan yaitu 100% baik, ini disebabkan karena pembagian pendistribusian air daerah irigasi hilir sudah optimal sesuai dengan luas lahan.   Subak system is one form of irrigation system that is able to accommodate the dynamics of the socio-technical system of the local community. Irrigation water is managed with the principles of justice, openness, harmony and togetherness, through a flexible organization that is in accordance with the interests of the community. Irrigation systems are closely related to the distribution of irrigation water in subaks based on land area. One aspect that will be assessed in an irrigation system is the Irrigation Management Achievement Ratio (RPM). The purpose of this study is to determine the RPM classification in a subak by scoring in each RPM classification. Secondary data acquisition is done by survey method, direct observation and measurement. The collected data will then be analyzed using the Irrigation Management Achievement Ratio (RPM) method. Irrigation RPM for each subak is assessed using four ranges of values, namely Good if 0.75 <RPM <1.25, Enough if 0.60 <RPM <0.75 or 1.25 <RPM <1.40, Less 0.40 <RPM <0.60 or 1.40 <RPM <1.60 and Very less if RPM <0.40 or RPM> 1.60 The results of the analysis method of irrigation management achievement ratio in the distribution of water in the subak obtained by the upstream area RPM namely Pama Palian, Aya I and Aya II have a good RPM that is an average of 100%. The availability of water is so abundant due to the upstream subak, the first subak to take water in an irrigation area. And the most important thing is the optimal water supply management system. For the subak area the RPM is slightly different from the upstream area. The average RPM of the central irrigation area that has sufficient criteria is 15.5% while 84.5% is good. For the central irrigation area which has sufficient RPM criteria with a value of 15.5% caused by the distribution of water is not as optimal as the upstream irrigation area. For Subak downstream irrigation areas the overall average RPM is 100% good, this is because the distribution of downstream irrigation water distribution is optimal according to the area of ??land.


Sign in / Sign up

Export Citation Format

Share Document