scholarly journals Response of Drought-Tolerant Corn to Varying Irrigation Levels in the Texas High Plains

2019 ◽  
Vol 62 (5) ◽  
pp. 1365-1375 ◽  
Author(s):  
Susan A. O’Shaughnessy ◽  
MinYoung Kim ◽  
Manuel A. Andrade ◽  
Paul D. Colaizzi ◽  
Steven R. Evett

Abstract.Corn ( L.) for grain continues to be an important crop for livestock feed in the Texas High Plains (THP) region despite lackluster prices. It offers greater crop water productivity compared with other crops grown in the region but also has a relatively high water requirement, which must be met by irrigation. The sole water resource in the region is the Ogallala Aquifer, which is declining because withdrawals exceed recharge, and this is of major concern. Producers are interested in the performance of drought-tolerant (DT) corn, but data on DT crop production functions are limited. From 2015 to 2017, studies of DT corn response to different irrigation treatments were conducted in the THP at Bushland, Texas. Results showed that grain yields, seasonal evapotranspiration (ETc), and crop water use efficiency (WUE) varied significantly between seasons and among different DT hybrids. Comparisons between a mid-season (MS) and an early-maturing (EM) hybrid showed: (1) at the severe deficit irrigation treatment level, grain yields were low, but the EM hybrid produced 400% more grain; (2) at the moderate deficit irrigation treatment level, grain yields and ETc were similar; and (3) at the full irrigation treatment level, the EM hybrid required 75 mm less water, but it produced 24% less grain. Non-hail damaged MS DT corn produced grain yields that were numerically greater than conventional corn grown in the THP in an optimal year. However, during drought seasons, DT hybrid response was not improved over conventional hybrids under severe deficit irrigation. This study demonstrated that MS DT corn hybrid P1151AM, irrigated at a level that fully met evapotranspiration demand, resulted in grain yield and WUE levels that were near the upper limits for corn produced in the THP. Further research is needed to determine the constancy of response among different DT hybrids under favorable and drought conditions. Keywords: Center pivot, Deficit irrigation, Early-maturing corn, Hail damage, Mid-season corn, Variable-rate irrigation, Water use efficiency.

2021 ◽  
Vol 6 (1) ◽  
pp. 37-43
Author(s):  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Steven R. Evett ◽  
Yong Chen ◽  
Kevin R. Heflin ◽  
...  

2015 ◽  
Vol 107 (5) ◽  
pp. 1922-1930 ◽  
Author(s):  
B. Hao ◽  
Q. Xue ◽  
T. H. Marek ◽  
K. E. Jessup ◽  
J. Becker ◽  
...  

HortScience ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1632-1641
Author(s):  
Hyungmin Rho ◽  
Paul Colaizzi ◽  
James Gray ◽  
Li Paetzold ◽  
Qingwu Xue ◽  
...  

The Texas High Plains has a semi-arid, hot, windy climate that features high evapotranspiration (ET) demands for crop production. Irrigation is essential for vegetable production in the region, but it is constrained by depleting groundwater from the Ogallala Aquifer. High-tunnel (HT) production systems may reduce irrigation water demand and protect crops from severe weather events (e.g., hail, high wind, freezing) common to the region. The objective of this study was to compare yields, fruit quality, crop water use, and crop water use efficiency (WUE) of jalapeno pepper (Capsicum annuum L.) and tomatoes (Solanum lycopersicum L.) in HT and open field (OF) production systems. We hypothesized that the protection from dry and high winds by HT would improve yields and quality of fruits and reduce water use of peppers and tomatoes. During the 2018 and 2019 growing seasons, peppers and tomatoes were transplanted on two HT plots and two identical OF plots. Plastic mulch was used in combination with a surface drip irrigation system. Micrometeorological variables (incoming solar irradiance, air temperature, relative humidity, and wind speed) and soil physical variables (soil temperature and volumetric soil water) were measured. Air temperatures were significantly higher during the daytime, and wind speed and light intensity were significantly lower in HT compared with OF. Despite the lower light intensity, yields were greater in HT compared with OF. The fruits grown in HT did not show significant differences in chemical quality attributes, such as ascorbic acid and lycopene contents, compared with those grown in OF. Because of protection from dry, high winds, plants in HT required less total water over the growing seasons compared with OF, resulting in increased WUE. The 2018 and 2019 data showed that HT production is advantageous as compared to conventional OF production in terms of increased WUE and severe weather risk mitigation for high-value vegetable production in the Texas High Plains.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Adnan Alghawry ◽  
Attila Yazar ◽  
Mustafa Unlu ◽  
Yeşim Bozkurt Çolak ◽  
Muhammad Aamir Iqbal ◽  
...  

Under changing climate, water scarcity and frequent incidence of diseases like stripe rust pose the biggest threat to sustainable crop production which jeopardizes nutritional security. A study was executed to rationalize crop water requirement and evaluate wheat (Triticum aestivum L. cv. Bohoth 3) yield losses by stripe rust infection under irrigated conditions. Seven water treatments included three irrigations in three stages/season ( S 3 ), four irrigations ( S 4 ), and five irrigations ( S 5 ) at the different sensitive growth stages, full ( F ), and two deficit irrigation levels including D 1 = 80 % of field capacity (FC) and D 2 = 70 % (FC) along with farmers’ practice of irrigation as control ( C ). Results revealed that F and D 1 boosted grain yield by 31 and 14%. Overall, F irrigation regime resulted in the highest grain production (2.93 ton/ha) as well as biomass yield (13.2 ton/ha). However, D 2 had the highest value of grain protein (15.9%) and achieved the highest application efficiency (AE) at midseason (54.6%) and end season (59.6%), and the lowest AE was under S 3 . Also, halting irrigation at the milky stage ( S 5 ) led to a significant decrease in irrigation water use efficiency as compared to D 1 . However, cutting irrigation at the end of seedling, heading, and milky stages ( S 3 ) caused a significant reduction in E a , crop water use (ETa), and 1000 grain weight in comparison with all other treatments. Regarding yellow rust, S 3 irrigation regime resulted in the lowest incidence of yellow rust infection. The highest irrigation and water use efficiency values were recorded under D 1 (0.79 and 0.59 kg/m3), and the lowest values were obtained for control. Hence, the deficit irrigation treatment D 1 could be recommended as the best appropriate strategy to save more water and to improve the water productivity under Yemeni agroclimatic conditions.


2009 ◽  
Vol 55 (No. 11) ◽  
pp. 494-503 ◽  
Author(s):  
A. Yazar ◽  
F. Gökçel ◽  
M.S. Sezen

This paper evaluates the effect of partial root zone drying (PRD) and deficit irrigation (DI) strategies on yield and water use efficiency of the drip-irrigated corn on clay soils under the Mediterranean climatic conditions in Southern Turkey. Four deficit (PRD-100; PRD-75; PRD-50; and DI-50) and one full irrigation (FI) strategies based on cumulative evaporation (E<sub> pan</sub>) from class A pan at 7-day interval were studied. Full (FI) and deficit irrigation (DI-50) treatments received 100 and 50% of E<sub>pan</sub>, respectively. PRD-100, PRD-75 and PRD-50 received 100, 75 and 50% E<sub>pan</sub> value, respectively. The highest water use was observed in FI as 677 mm, the lowest was found in PRD-50 as 375 mm. PRD-100 and DI-50 resulted in similar water use (438 and 445 mm). The maximum grain yield was obtained from the FI as 10.40 t/ha, while DI-50 and PRD-100 resulted in similar grain yields of 7.72 and 7.74 t/ha, respectively. There was a significant difference among the treatments with respect to grain yields (<i>P</i> < 0.01). The highest water use efficiency (WUE) was found in PRD-100 as 1.77 kg/m<sup>3</sup>, and the lowest one was found in FI as 1.54 kg/m<sup>3</sup>.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2370
Author(s):  
Breno Leonan de Carvalho Lima ◽  
Ênio Farias de França e Silva ◽  
João Henrique Zonta ◽  
Cícero Pereira Cordão Terceiro Neto ◽  
Claudivan Feitosa de Lacerda ◽  
...  

Treated domestic sewage (TDS) can contribute to plant nutrition and improve crop production. However, there are no data for its use in coloured cotton under a deficit or excess irrigation in combination with potassium fertilization rates (KRs), mainly under semiarid tropical conditions. The research was conducted using a randomized complete block design in a factorial scheme (5 × 5, irrigation regimes vs. potassium rates), plus an additional treatment as the control ((5 × 5) + 1). The treatments consisted of five TDS irrigation regimes (50, 75, 100, 125, and 150% of crop evapotranspiration—ETC) and five KRs (0, 50, 100, 150, and 200% of the local crop recommendation), plus a control—CT— (irrigated with fresh water at 100% ETC and fertilized according to the local crop recommendation) and four replications. The optimal crop yield, water use efficiency, and potassium use efficiency were obtained when TDS was applied as a deficit irrigation treatment of 75% of ETc or as full irrigation (100% of ETC) and when associated with moderate increases in K fertilization. These treatments also resulted in a better fibre quality when compared to the CT, meeting or exceeding the requirements of the textile industry. Therefore, moderate deficit irrigation with TDS is indicated as an important strategy to save fresh water and to reduce the use of fertilizers, while having the potential to increase profit margins for cotton production in tropical semiarid regions.


2011 ◽  
Vol 38 (2) ◽  
pp. 106 ◽  
Author(s):  
Iván F. García-Tejero ◽  
Víctor H. Durán-Zuazo ◽  
José L. Muriel-Fernández ◽  
Juan A. Jiménez-Bocanegra

The continuous monitoring of crop water status is key to the sustainable management of water stress situations. Two deficit irrigation (DI) treatments were studied during the maximum evapotranspirative demand period in an orange orchard (Citrus sinensis (L.) Osb. cv. Navelina): sustained deficit irrigation irrigated at 55% crop evapotranspiration (ETC), and low-frequency deficit irrigation treatment, in which the plants were irrigated according to stem water potential at midday (Ψstem). Additionally, a control treatment irrigated at 100% of ETC was established. The daily canopy temperature (TC) was measured with an infrared thermometer camera together with measurements of trunk diameter fluctuations (TDF), Ψstem and stomatal conductance (gS). The time course of all physiological parameters and their relationships were analysed, confirming that canopy air temperature differential (TC – Ta) variations and TDF are suitable approaches for determining the water stress. In addition, the maximum daily shrinkage (MDS) and TC – Ta showed high sensitivity to water stress in comparison to Ψstem and gS. Significant relationships were found among MDS and TC – Ta with Ψstem and gS, for monitoring the crop water status by means of MDS vs Ψstem and TC – Ta vs Ψstem. Thus, the combination of these techniques would be useful for making scheduling decisions on irrigation in orchards with high variability in plant water stress.


Sign in / Sign up

Export Citation Format

Share Document