scholarly journals Irrigation with Wastewater and K Fertilization Ensure the Yield and Quality of Coloured Cotton in a Semiarid Climate

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2370
Author(s):  
Breno Leonan de Carvalho Lima ◽  
Ênio Farias de França e Silva ◽  
João Henrique Zonta ◽  
Cícero Pereira Cordão Terceiro Neto ◽  
Claudivan Feitosa de Lacerda ◽  
...  

Treated domestic sewage (TDS) can contribute to plant nutrition and improve crop production. However, there are no data for its use in coloured cotton under a deficit or excess irrigation in combination with potassium fertilization rates (KRs), mainly under semiarid tropical conditions. The research was conducted using a randomized complete block design in a factorial scheme (5 × 5, irrigation regimes vs. potassium rates), plus an additional treatment as the control ((5 × 5) + 1). The treatments consisted of five TDS irrigation regimes (50, 75, 100, 125, and 150% of crop evapotranspiration—ETC) and five KRs (0, 50, 100, 150, and 200% of the local crop recommendation), plus a control—CT— (irrigated with fresh water at 100% ETC and fertilized according to the local crop recommendation) and four replications. The optimal crop yield, water use efficiency, and potassium use efficiency were obtained when TDS was applied as a deficit irrigation treatment of 75% of ETc or as full irrigation (100% of ETC) and when associated with moderate increases in K fertilization. These treatments also resulted in a better fibre quality when compared to the CT, meeting or exceeding the requirements of the textile industry. Therefore, moderate deficit irrigation with TDS is indicated as an important strategy to save fresh water and to reduce the use of fertilizers, while having the potential to increase profit margins for cotton production in tropical semiarid regions.

2016 ◽  
Vol 14 (1) ◽  
pp. 01-14 ◽  
Author(s):  
M A Mojid ◽  
G C L Wyseure ◽  
S K Biswas

Due to increasing scarcity of fresh water, use of unconventional water source (e.g., wastewater) in irrigation has now become important. However, inclusive information on the effects of wastewater on crop production and soil health is necessary for such intervention. This study was designed to evaluate these effects by demonstrating the contribution of municipal wastewater (hereafter called wastewater) on yield and nutrient requirement of wheat (<i>Triticum aestivum</i> L.) cv Shatabdi. Five irrigation treatments - I1, I2, I3, I4 and I5  were tested in a Randomized Complete Block Design (RCBD) with three replications during November-March of 2007-2008, 2008-2009, 2009-2010 at the experimental field of the Bangladesh Agricultural University,  Mymensingh. The treatments I2-I5 consisted of blended wastewater and I1 of fresh water (control). The ratio of wastewater to total irrigation water was 0.25, 0.50, 0.75 and 1.0 in I2, I3, I4 and I5, respectively. Wheat was cultivated with three irrigations and recommended doses of fertilizer in three consecutive years. Wastewater contained nitrogen (N), phosphorus (P) and potassium (K) @ 17.5, 3.7 and 10.3 mg/L, respectively, and irrigation by raw wastewater (I5) contributed 19.1, 15.1 and 21.7% of the recommended N, P and K, respectively. Biomass yield increased with increasing fraction of wastewater in irrigation. Grain yield increased for the wastewater fraction of 0.50 - 0.75 in irrigation but decreased when irrigation was applied by raw wastewater. Excess fertilizer (under I5) boosted up growth of wheat, but did not contribute to the grain yield. Number of grains per spike; and grain, straw and biological yields significantly (p = 0.05) increased due to the contribution of wastewater. Wastewater significantly improved grain and biomass production, with the largest value obtained in I4 (4.61 t/ha grain yield and 11.36 t/ha biomass yield).  Raw wastewater in combination with recommended fertilizer doses caused over-fertilization that contributed only in biomass production but not in grain production of wheat and irrigation by wastewater substantially reduced fertilizer requirement of wheat.The Agriculturists 2016; 14(1) 01-14


2019 ◽  
Vol 62 (5) ◽  
pp. 1365-1375 ◽  
Author(s):  
Susan A. O’Shaughnessy ◽  
MinYoung Kim ◽  
Manuel A. Andrade ◽  
Paul D. Colaizzi ◽  
Steven R. Evett

Abstract.Corn ( L.) for grain continues to be an important crop for livestock feed in the Texas High Plains (THP) region despite lackluster prices. It offers greater crop water productivity compared with other crops grown in the region but also has a relatively high water requirement, which must be met by irrigation. The sole water resource in the region is the Ogallala Aquifer, which is declining because withdrawals exceed recharge, and this is of major concern. Producers are interested in the performance of drought-tolerant (DT) corn, but data on DT crop production functions are limited. From 2015 to 2017, studies of DT corn response to different irrigation treatments were conducted in the THP at Bushland, Texas. Results showed that grain yields, seasonal evapotranspiration (ETc), and crop water use efficiency (WUE) varied significantly between seasons and among different DT hybrids. Comparisons between a mid-season (MS) and an early-maturing (EM) hybrid showed: (1) at the severe deficit irrigation treatment level, grain yields were low, but the EM hybrid produced 400% more grain; (2) at the moderate deficit irrigation treatment level, grain yields and ETc were similar; and (3) at the full irrigation treatment level, the EM hybrid required 75 mm less water, but it produced 24% less grain. Non-hail damaged MS DT corn produced grain yields that were numerically greater than conventional corn grown in the THP in an optimal year. However, during drought seasons, DT hybrid response was not improved over conventional hybrids under severe deficit irrigation. This study demonstrated that MS DT corn hybrid P1151AM, irrigated at a level that fully met evapotranspiration demand, resulted in grain yield and WUE levels that were near the upper limits for corn produced in the THP. Further research is needed to determine the constancy of response among different DT hybrids under favorable and drought conditions. Keywords: Center pivot, Deficit irrigation, Early-maturing corn, Hail damage, Mid-season corn, Variable-rate irrigation, Water use efficiency.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 879d-879
Author(s):  
Thayne Montague ◽  
Lindsey Fox

Recent droughts and depleted water tables across many regions have elevated the necessity to irrigate field-grown (FG) nursery trees. At the same time, ordinances restricting nursery irrigation volume (often without regard to plant water requirements) have been implemented. This research investigated gas exchange and growth of two FG maple tree species (Acer × freemanii `Autumn Blaze' and A. truncatum) subjected to three reference evapotranspiration (ETo) irrigation regimes (100%, 60%, and 30% of ETo) in a semi-arid climate. During Spring 2002, nine containerized (11.3 L) trees of each species were field planted in a randomized block design. Each year trees were irrigated through a drip irrigation system. During the first growing season, all trees were irrigated at 100% ETo. Irrigation treatments began Spring of 2003. Gas exchange data (pre-dawn leaf water potential and midday stomatal conductance) were collected during the 2003 and 2004 growing seasons and growth data (shoot elongation, caliper increase, and leaf area) were collected at the end of each growing season. For each species, yearly data indicates irrigation regime influenced gas exchange and growth of these FG trees. However, it is interesting to note gas exchange and growth of these FG maple trees were not necessarily associated with trees receiving the high irrigation treatment. In addition, it appears the influence of irrigation volume on the growth of these FG trees is plant structure and species specific. Our data suggests irrigation of FG trees based upon local ETo measurements and soil surface root area may be a means to conserve irrigation water and produce FG trees with adequate growth. However, continued research on the influence of reduced irrigation on FG tree species is needed.


2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Yahya & Abdul-Razaq

This experiment was carried out at the experimental farm of Field Crop Department, College of Agriculture, university of Baghdad, during two spring seasons of 2012 and 2013 to study the response of quality characteristics of sunflower cultivar Akmar to the irrigation methods and water of magnetization technology and water use efficiency. The experiment was laid out as a split plot in randomized complete block design (RCBD) with three replications. Four irrigation methods were used as main plots, [Farrow irrigation (I1), unfixed alternate furrow irrigation (I2), fixed alternate furrow irrigation (I3) and basin irrigation (I4)], while four levels of magnetized water (0, 1000, 2000 and 3000) Gauss were used as sub plot treatments. The results revealed that unfixed alternate furrow irrigation method could reduce irrigation water by 40 %, and it was irrigation water reduced from 425 to 255 mm per season in 2012th season and reduced from 364 to 234mm per season in 2013 season were an increment of water use efficiency (WUE) by 63.5% and 61.4% were accrued during growing seasons respectively in comparison with full irrigation treatment (I1). The Leaves potassium content decreased by14.4 to 5.8% for both seasons respectively. No significant effect was detected between I1 and I2 in qualitative traits except reduction in oil percentage as it reaches 6.3 to 8.8% in both seasons respectively. Results displayed a positive effect of using magnetized irrigation water on all measured traits. WUE increased by 45.1 to 56 %, nitrogen leaf content by 19.6 and 4.8% , phosphor leaves content by 35.1 and 41.7%, potassium leaves content by 20.7 and 10.8%, chlorophyll content by 4.5 to 7.6%, seed oil content by 5.0 to 5.6%. Interaction relations between experiment treatments were significant in some of studded traits.


Author(s):  
Beza Shewangizaw ◽  
Anteneh Argaw ◽  
Tesfaye Feyisa ◽  
Endalkachew Wold-Meskel ◽  
Birhan Abdulkadir

Abstract In sub-Saharan Africa, multiple plant nutrients deficiency besides N and P is a major growth-limiting factor for crop production. As a result, some soils become non-responsive for Rhizobium inoculation besides P application. Based on the soil test result, the soil of experimental sites had low OM, N, P, S and Zn. Hence, an experiment was carried out on-farm, during 2016/17 growing season, at Gondar Zuria woreda in Tsion and Denzaz Kebeles to evaluate the effect of Rhizobium inoculation, S and Zn application on yield, nodulation, N and P uptake of chickpea. The experiment included twelve treatments developed via factorial combination of two level of inoculation (Rhizobium inoculated, un-inoculated), three level of S (0, 15, 30 kg Sulphur ha-1) and two levels of Zn (0, 1.5 kg Zinc ha-1). The treatment was laid out in randomized complete block design with three replications. Results showed that the highest mean nodule number (15.3) and nodule volume (1.3 ml plant-1) over locations were obtained with Rhizobium inoculation integrated with 15 kg S and 1.5 kg Zn ha-1 which resulted in 37.8% and 116.7% increment over the control check, respectively. It was also observed that combined application of Rhizobium and 30 kg S ha-1 caused the highest (6.7) mean nodulation rating and seed yield (1775.5 kg ha-1) over locations which resulted in 86.1% and 28 % increase over the control check, respectively. Moreover, this treatment improved P use efficiency of chickpea. On the bases of observed result, it can be concluded that the response of chickpea to Rhizobium and P application can be improved by S application and Rhizobium inoculation with application of 30 kg S ha-1 with recommended rate of P and starter N is recommended for chickpea production at the experimental locations in Gonder Zuria Woreda.


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 85-91 ◽  
Author(s):  
Q. Li ◽  
M. Liu ◽  
J. Zhang ◽  
B. Dong ◽  
Q. Bai

To better understand the potential for improving biomass accumulation and radiation use efficiency (RUE) of winter wheat under deficit irrigation regimes, in 2006–2007 and 2007–2008, an experiment was conducted at the Luancheng Experimental Station of Chinese Academy of Science to study the effects of deficit irrigation regimes on the photosynthetic active radiation (PAR), biomass accumulation, grain yield, and RUE of winter wheat. In this experiment, field experiment involving winter wheat with 1, 2 and 3 irrigation applications at sowing, jointing, or heading stages was conducted, and total irrigation water was all controlled at 120 mm. The results indicate that irrigation 2 or 3 times could help to increase the PAR capture ratio in the later growing season of winter wheat; this result was mainly due to the changes in the vertical distributions of leaf area index (LAI) and a significant increase of the LAI at 0–20 cm above the ground surface (LSD, <i>P</i> < 0.05). Compared with irrigation only once during the growing season of winter wheat, irrigation 2 times significantly (LSD, <i>P</i> < 0.05) increased aboveground dry matter at maturity; irrigation at sowing and heading or jointing and heading stages significantly (LSD, <i>P</i> < 0.05) improved the grain yield, and irrigation at jointing and heading stages provided the highest RUE (0.56 g/mol). Combining the grain yield and RUE, it can be concluded that irrigation at jointing and heading stages has higher grain yield and RUE, which will offer a sound measurement for developing deficit irrigation regimes in North China.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2115
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Salwa M.A.I. Ash-Shormillesy ◽  
Naglaa Qabil ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water-deficit stress poses tremendous constraints to sustainable agriculture, particularly under abrupt climate change. Hence, it is crucial to find eco-friendly approaches to ameliorate drought tolerance, especially for sensitive crops such as maize. This study aimed at assessing the impact of seed halo-priming on seedling vigor, grain yield, and water use efficiency of maize under various irrigation regimes. Laboratory trials evaluated the influence of seed halo-priming using two concentrations of sodium chloride solution, 4000 and 8000 ppm NaCl, versus unprimed seeds on seed germination and seedling vigor parameters. Field trials investigated the impact of halo-priming treatments on maize yield and water use efficiency (WUE) under four irrigation regimes comprising excessive (120% of estimated crop evapotranspiration, ETc), normal (100% ETc), and deficit (80 and 60% ETc) irrigation regimes. Over-irrigation by 20% did not produce significantly more grain yield but considerably reduced WUE. Deficit irrigation (80 and 60%ETc) gradually reduced grain yield and its attributes. Halo-priming treatments, particularly 4000 ppm NaCl, improved uniformity and germination speed, increased germination percentage and germination index, and produced more vigorous seedlings with heavier dry weight compared with unprimed seeds. Under field conditions, the plants originated from halo-primed seeds, especially with 4000 ppm NaCl, had higher grain yield and WUE compared with unprimed seeds under deficit irrigation regimes. The long-lasting stress memory induced by seed halo-priming, particularly with 4000 ppm NaCl, promoted maize seedling establishment, grain yield, and WUE and consequently mitigated the devastating impacts of drought stress.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Nagaz ◽  
M. M. Masmoudi ◽  
N. Ben Mechlia

A two-year study was conducted in arid region of Tunisia to evaluate the effects of deficit irrigation regimes with saline water on soil salinity, yield, and water use efficiency of onion grown in a commercial farm on a sandy soil and drip-irrigated with water having an of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated at levels of 100% (SWB-100, full irrigation), 80% (DI-80), 60% (DI-60), when the readily available water in the control treatment (SWB-100) is depleted, deficit irrigation during ripening stage (SWB100-MDI60) and farmer method corresponding to irrigation practices implemented by the local farmers. Results on onion production and soil salinization are globally coherent between the two-year experiments and show significant difference between irrigation regimes. Higher soil salinity was maintained in the root zone with DI-60 and farmer treatments than full irrigation (SWB-100). SWB100-MDI60 and DI-80 treatments resulted also in low values. No significant differences were observed in bulbs fresh and dry yields, bulbs number·ha−1 and weight from the comparison between full irrigation (SWB-100) and deficit treatments (DI-80, SWB100-MDI60). DI-60 irrigation treatment caused significant reductions in the four parameters considered in comparison with SWB-100. The farmer method caused significant reductions in yield components and resulted in increase of water usage 45 and 33% in 2008 and 2009, respectively. Water use efficiency was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 and farmer treatments, respectively. The full irrigation (SWB-100) and deficit irrigation (DI-80 and SWB100-MDI60) strategies were found to be a useful practice for scheduling onion irrigation with saline water under the arid Mediterranean conditions of southern Tunisia.


2021 ◽  
Vol 13 (7) ◽  
pp. 4044
Author(s):  
Hafiz Shahzad Ahmad ◽  
Muhammad Imran ◽  
Fiaz Ahmad ◽  
Shah Rukh ◽  
Rao Muhammad Ikram ◽  
...  

The socio-economic development of a country is highly dependent on water availability. Nowadays, increasing water scarcity is a major global challenge. Continuing improvements in water-use efficiency are essential for cotton production sustainability. Reduced irrigation in cotton could be a solution to water shortage in the arid climate without compromising the cotton yield. Therefore, a two-year field study was conducted to assess the effect of two levels of irrigation i.e., 50% and 100% of available water content (AWC) on the yield of four cotton genotypes (CIM-678, CIM-343, CRIS-613, and CYTO-510). The maximum seed cotton yield was observed in CIM-678, which was 2.31 and 2.46 Mg ha−1 under 100% AWC during 2018 and 2019, respectively, and was non-significantly reduced by 7.7 and 8.94%, owing to deficit irrigation. The maximum water use efficiency (WUE) of 0.55 and 0.64 Kg ha−1 mm−1 was observed under 50% AWC in CIM-678, which was significantly higher than WUE at 100% AWC during both years. Leaf area index and physiological parameters such as photosynthesis rate, transpiration rate, and stomatal conductance were not significantly affected by deficit irrigation. So, it was concluded that the reduced irrigation technique performed well without significant yield loss, improve WUE, and saved 37 cm of water that could be used for other crops or to increase the area of the cotton crop.


2016 ◽  
Vol 47 (2) ◽  
Author(s):  
Abass & Alag

A field study was conducted during the spring and autumn seasons of 2014 at the experimental farm of Field Crop Department, College of  Agriculture (Abo-Ghraib) - University of Baghdad, to study the effect of Irrigation deficiency quantities and concentrations of Proline acid on yield , its components, water consumptive and water use efficiency of sunflower (Helianthus annus L. ) for Luleo hybrid. Randomized Complete Block Design (RCBD) in arrangement of a split-plot with three replications were used. Irrigation treatments, control (depletion  50% of available water) and 60% , 50%  40% of control treatment, were assigned as a main plots. while proline acid concentrations of 0, 30, 60 and 90 mg.L-1 were assigned as a subplots. The results showed that there is no significant differences between the control treatment and 60% of the control for  the period from planting to 50% flowering, number of leaves, relative water content, nitrogen concentration in leaves, fertilization percentage, number of seeds in the head,100 seed weight and seeds yield reaching 3.90, 2.46 t.ha-1  and 3.78 , 2.41 t.ha-1 for spring and autumn seasons respectively. which indicates the possibility of saving 40% of the water consumption which is estimated 1920.00, 2960.00 m3. ha-1. Season-1  for two seasons respectively without any yield reduction. While the percentage of decline in seeds yield for treatments 50% and 40% from the control treatment for spring season were 14.61%  , 19.74% respectively and 21.95 % , 33.33% for autumn season comparing with control. Irrigation treatment 40%, 60% of the control treatments gave the best water use efficiency for both seasons respectively. a concentrations of Proline acid affect significantly most of studied traits. Increasing of Proline to 60mg.L-1 gave the to increase in fertilization percentage was  و70.2081.% 100 seed weight7.12 و7.52 gm, seed yield 3.75, 2.21 t.ha-1 and water use efficiency 0.84 و0.29  kg seed.m-3 water comparing with control for two seasons respectively .The interaction between irrigation and Proline acid showed a significantly effect on all characteristics seeds yield components traits in both seasons. We therefore recommend that in case of limited  irrigation water  by %60 by the need of the full irrigation (50 % depletion of available water) without a significant decrease in product seed yield, in addition to possibility treatment of  sunflower plants with Proline acid with 60 mg .L-1 to improvement capacity of water stress.


Sign in / Sign up

Export Citation Format

Share Document