Assessment of Hygrothermal Conditions in a Farrowing Room with a Wet-Pad Cooling System Based on CFD Simulation and Field Measurements

2014 ◽  
pp. 1493-1500
2021 ◽  
pp. 177-177
Author(s):  
Wei-Ming Chiang ◽  
Fu-Jen Wang ◽  
K Kusnandar

Following the trend of high-accuracy machining, thermal management of industrial control enclosures become a critical issue. Therefore, a well-designed enclosure cooling system is essential to manage the heat generation inside the enclosure. In this study, to improve the performance of cooling system and the air flow distribution inside the enclosure, computational fluid dynamics (CFD) simulation has been used to evaluate the application of using the auxiliary circulation fan and air baffler. Furthermore, this study also investigates the layout design for both supply air vent and return air vent arrangement by two types of commercialized cooling systems through field measurements. The simulation results show the short circulation of airflow is improved when the air baffler is installed. It also shows that the auxiliary circulation fan is suggested. Besides, air baffler is used to enhance the temperature distribution. The experimental results reveal the upper supply vent arrangement will cause the short circulation of airflow slightly. And, the auxiliary circulation fans can improve the heat dissipation of cooling systems. There is no short circulation of airflow for the lower supply vent arrangement, but the supply air cannot be distributed smoothly by the auxiliary circulation fans because the shape of the air baffler is not properly designed.


Author(s):  
Andrea Cremasco ◽  
Wei Wu ◽  
Andreas Blaszczyk ◽  
Bogdan Cranganu-Cretu

Purpose The application of dry-type transformers is growing in the market because the technology is non-flammable, safer and environmentally friendly. However, the unit dimensions are normally larger and material costs become higher, as no oil is present for dielectric insulation or cooling. At designing stage, a transformer thermal model used for predicting temperature rise is fundamental and the modelling of cooling system is particularly important. This paper aims to describe a thermal model used to compute dry transformers with different cooling system configurations. Design/methodology/approach The paper introduces a fast-calculating thermal and pressure network model for dry-transformer cooling systems, preliminarily verified by analytical methods and advanced CFD simulations, and finally validated with experimental results. Findings This paper provides an overview of the network model of dry-transformer cooling system, describing its topology and its main variants including natural or forced ventilation, with or without cooling duct in the core, enclosure with roof and floor ventilation openings and air barriers. Finally, it presents a formulation for the new heat exchanger element. Originality/value The network approach presented in this paper allows to model efficiently the cooling system of dry-type transformers. This model is based on physical principles rather than empirical assessments that are valid only for specific transformer technologies. In comparison with CFD simulation approach, the network model runs much faster and the accuracies still fall in acceptable range; therefore, one is able to utilize this method in optimization procedures included in transformer design systems.


Author(s):  
G. Bella ◽  
V. K. Krastev

The need for reliable CFD simulation tools is a key factor for today’s automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed body [1] is a simplified car model nowadays largely accepted as a test-case prototype of a modern passenger car because in its aerodynamic behavior is possible to recognize many of the typical features of a light duty vehicle. Several previous works have pointed out that the flow region which presents the major contribution to the overall aerodynamic drag, and which presents severe problems to numerical predictions and experimental studies as well, is the wake flow behind the vehicle model. In particular, a more exact simulation of the wake and separation process seems to be essential for the accuracy of drag predictions. In this paper a numerical investigation of flow around the Ahmed body, performed with the open-source CFD toolbox OpenFOAM®, is presented. Two different slant rear angle configurations have been considered and several RANS turbulence models, as well as different wall treatments, have been implemented on a hybrid unstructured computational grid. Pressure drag predictions and other flow features, especially in terms of flow structures and velocity field in the wake region, have been critically compared with the experimental data available in the literature and with some prior RANS-based numerical studies.


Author(s):  
Goran Simeunovic ◽  
Lukáš Popelka ◽  
Petr Hatschbach

The bay cooling of a specific new turboprop engine is investigated in this paper. The new ATP turboprop engine has additional jets with hot air stream close to the PT. This considerably increases the temperature inside the first nacelle compartment in the hot engine part around the engine combustion chamber. In order to achieve the optimal temperature conditions for engine parts inside the nacelle in the critical operating regime (triple red line), a new bay cooling system is proposed. Using the existing standard (National Advisory Committee for Aeronautics) NACA inlet at the front of the nacelle, two additional groups of ribs on rear part of front nacelle compartment and standard nacelle gaps (around exhausts), the temperature in the front part of the nacelle is decreased bellow the critical temperature for installed devices and engine parts (gear box etc.) in this compartments. Using a 3D CFD model of the first compartment of the nacelle is analyzed using the software ANSYS. The boundary conditions for this CFD simulation are obtained from ground testing of the turboprop engine.


Author(s):  
Jingya Li ◽  
Xiaoying Zhang

The passive cooling system (PCCS) for reactor containment is a security system that can be used to cool the atmosphere and reduce pressure inside of containment in case of temperature and pressure increase caused by vapor injection, which requires no external power because it works only with natural forces. However, as the driving forces from natural physical phenomena are of low amplitude, uncertainties and instabilities in the physical process can cause failure of the system. This article aims to establish a CFD simulation model for the Passive Containment Cooling System of 1000MW PWR using Code_Saturne and FLUENT software. The comparison of 4 different models based respectively on mixture model, COPAIN test, Uchida correlation and Chilton-Colburn analogy which simulate the condensing effect and the improvement of source code are based on a 3D simulation of PCCS system. To simulate the thermal-hydraulic condition in the containment after LOCA accident caused by a double-ended main pipe rupture, a high temperature vapor with the given mass flow rate are supposed to be the source of energy and mass into containment. Meanwhile the surface of three condensing island applies the wall condensation model. The simulation results show similar transient process obtained with the 4 models, while the difference between the transient simulation and the steady-state analysis of three models is less than 3%. The large mass flow rate of water loss status inside the containment cause a high flow rate of vapor which could be uniformly mixed with air in a short time. For the self-condensing efficiency of 3 groups of PCCS system, the non-centrosymmetric injection position resulting that the condensing efficiency is slightly higher for the two heat exchanger groups nearby. During the first 2400s of simulation time, more than 75.69% of the vapor is condensed, indicating that for the occurrence of condensation at the wall mainly driven by natural convection, the effect of thermodynamic siphon could improve the flow of gas mixture inside the tubes when the velocity of mixture is not large enough, so that the vapor could smoothly enter the tube and reach the internal cooling surface then to be condensed. Besides, PCCS ensure the containment internal pressure maintained below 2 bar and the temperature maintained below 380K during 3600s.


2012 ◽  
Vol 588-589 ◽  
pp. 518-521
Author(s):  
Feng Ge Zhang ◽  
Guang Hui Du ◽  
Tian Yu Wang ◽  
Na Huang

Due to ventilation structure of high power high-speed permanent magnet motor is complex and rotor cooling is difficult, the rotor cooling system was designed for a 1020kw 19000r/min high-speed permanent magnet motor and fluid field calculation model was established through the fluid flow CFD simulation software, and then the solving regional and boundary conditions of the 3D fluid field was determined. The numerical calculation and analysis was carried out and 3D fluid field distribution was get within the ventilation system. On the basis of the results of the flow field calculation, the coefficient of wall heat can be got more accurately, which provides a basis for the optimization and count of the MW-level high-speed motor temperature field.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Tanzeen Sultana ◽  
Graham L. Morrison ◽  
Robert Taylor ◽  
Gary Rosengarten

In this paper, simulation of a linear Fresnel rooftop mounted concentrating solar collector is presented. The system is modeled with the transient system (trnsys) simulation program using the typical meteorological year file containing the weather parameters of four different cities in Australia. Computational fluid dynamics (CFD) was used to determine the heat transfer mechanism in the microconcentrating (MCT) collector. Ray trace simulations using soltrace (NREL) were used to determine optical efficiency. Heat loss characteristics determined from CFD simulation were utilized in trnsys to assess the annual performance of the solar cooling system using an MCT collector. The effect of the different loads on the system performance was investigated, and from trnsys simulations, we found that the MCT collector achieves a minimum 60% energy saving for both domestic hot water usage and high temperature solar cooling and hot water applications.


2019 ◽  
Vol 695 ◽  
pp. 133743 ◽  
Author(s):  
Nestoras Antoniou ◽  
Hamid Montazeri ◽  
Marina Neophytou ◽  
Bert Blocken

Sign in / Sign up

Export Citation Format

Share Document