On the RANS Modeling of Turbulent Airflow Over a Simplified Car Model

Author(s):  
G. Bella ◽  
V. K. Krastev

The need for reliable CFD simulation tools is a key factor for today’s automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed body [1] is a simplified car model nowadays largely accepted as a test-case prototype of a modern passenger car because in its aerodynamic behavior is possible to recognize many of the typical features of a light duty vehicle. Several previous works have pointed out that the flow region which presents the major contribution to the overall aerodynamic drag, and which presents severe problems to numerical predictions and experimental studies as well, is the wake flow behind the vehicle model. In particular, a more exact simulation of the wake and separation process seems to be essential for the accuracy of drag predictions. In this paper a numerical investigation of flow around the Ahmed body, performed with the open-source CFD toolbox OpenFOAM®, is presented. Two different slant rear angle configurations have been considered and several RANS turbulence models, as well as different wall treatments, have been implemented on a hybrid unstructured computational grid. Pressure drag predictions and other flow features, especially in terms of flow structures and velocity field in the wake region, have been critically compared with the experimental data available in the literature and with some prior RANS-based numerical studies.

Author(s):  
Martin D Griffith ◽  
Timothy N Crouch ◽  
David Burton ◽  
John Sheridan ◽  
Nicholas AT Brown ◽  
...  

A method for computing the wake of a pedalling cyclist is detailed and assessed through comparison with experimental studies. The large-scale time-dependent turbulent flow is simulated using the Scale Adaptive Simulation approach based on the Shear Stress Transport Reynolds-averaged Navier–Stokes model. Importantly, the motion of the legs is modelled by joining the model at the hips and knees and imposing solid body rotation and translation to the lower and upper legs. Rapid distortion of the cyclist geometry during pedalling requires frequent interpolation of the flow solution onto new meshes. The impact of numerical errors, that are inherent to this remeshing technique, on the computed aerodynamic drag force is assessed. The dynamic leg simulation was successful in reproducing the oscillation in the drag force experienced by a rider over the pedalling cycle that results from variations in the large-scale wake flow structure. Aerodynamic drag and streamwise vorticity fields obtained for both static and dynamic leg simulations are compared with similar experimental results across the crank cycle. The new technique presented here for simulating pedalling leg cycling flows offers one pathway for improving the assessment of cycling aerodynamic performance compared to using isolated static leg simulations alone, a practice common in optimising the aerodynamics of cyclists through computational fluid dynamics.


2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


Author(s):  
Grzegorz Nowak

This paper discusses the problem of cooling system optimization within a gas turbine airfoil regarding to thermo-mechanical behavior of the component, as well as some economical aspects of turbine operation. The main goal of this paper is to show the possibilities of evolutionary approach application to the cooling system optimization. This method, despite its relatively high computational cost, seems to be a valuable tool to such technical problems. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially cooling is provided with circular passages and heat is transported by convection. During the optimization the number of channels can vary. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. Also a constant pressure drop is assumed along the passage length. The thermal boundary conditions in passages vary with diameter and local vane temperature (passage wall temperature). The analysis is performed by means of the genetic algorithm for the optimization task and FEM for the heat transfer predictions within the component. In the present study the airfoil profile is taken as aerodynamically optimal and the objective of the search procedure is to find cooling structure variant that at given external conditions provides lower stresses, material temperature and indirectly coolant usage.


Author(s):  
Fabio De Bellis ◽  
Luciano A. Catalano ◽  
Andrea Dadone

The numerical simulation of horizontal axis wind turbines (HAWT) has been analysed using computational fluid dynamics (CFD) with the aim of obtaining reliable but at the same time affordable wind turbine simulations, while significantly reducing required overall resources (time, computational power, user skills), for example in an optimization perspective. Starting from mesh generation, time required to extract preliminary aerodynamic predictions of a wind turbine blade has been shortened by means of some simplifications, i.e.: fully unstructured mesh topology, reduced grid size, incompressible flow assumption, use of wall functions, commercial available CFD package employment. Ansys Fluent software package has been employed to solve Reynolds Averaged Navier Stokes (RANS) equations, and results obtained have been compared against NREL Phase VI campaign data. The whole CFD process (pre-processing, processing, postprocessing) has been analysed and the chosen final settings are the result of a trade-off between numerical accuracy and required resources. Besides the introduced simplifications, numerical predictions of shaft torque, forces and flow distribution are in good agreement with experimental data and as accurate as those calcuted by other more sophisticated works.


2021 ◽  
Vol 215 ◽  
pp. 104698
Author(s):  
Xiao-Bai Li ◽  
Xi-Feng Liang ◽  
Zhe Wang ◽  
Xiao-Hui Xiong ◽  
Guang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document