scholarly journals A Novel Dual Magnetodiode for Wireless Sensor Networks

Author(s):  
Chalin Sutthinet ◽  
Amporn Poyai ◽  
Toempong Phetchakul

This paper presents a new magnetodiode, the so-called dual magnetodiode, for wireless sensor application. The device is a current mode which can be integrated with a chip compatible with modern low power, low voltage integrated circuit (IC). The structure and operation are completely different from a conventional magnetodiode. The structure is composed of two p–n junctions in that one region is common and the others are split terminals for output of differential current. The underlying mechanism is carrier deflection by induced force from a magnetic field. The carriers are injected from the common region by forward bias. The defection carriers diffuse, deflect, and recombine along substrate through split terminals according to direction and density of the magnetic field linearly and symmetrically. From the comparison of complementary structure of the split cathode and the split anode structure of LD = 50 μm, the bias current 1 mA and magnetic field 0.5 T, the relative sensitivities (SR) are 11.01 and 11.19 T−1, respectively. This device is a simple p–n junction structure which is compatible with all micro/nanotechnology.

2013 ◽  
Vol 739 ◽  
pp. 489-492
Author(s):  
Toempong Phetchakul ◽  
Prateep Taisettavatkul ◽  
Wittawat Yamwong ◽  
Amporn Poyai

The split-current magnetoresistor is proposed here. The structure likes the series magnetoresistor that one end split into two symmetrical terminals, so it is the magnetoresistor with three terminals. It uses the Hall effect current mode as magnetoresistor but the output is the differential current instead of resistance. It shows good linearity and can detect the magnetic field direction. The sensitivity in the differential current of width 100 μm and length 200 μm at 1 mA is 2.788x10-6 A/T constantly while the conventional one in the differential resistance is varied with magnetic field. It is made of silicon non magnetic material so it is compatible with the modern low-voltage current-mode integrated circuit.


Author(s):  
Ю.Н. Ханин ◽  
Е.Е. Вдовин

AbstractThe photoconductivity and its relaxation characteristics in tunneling p – i – n GaAs/AlAs heterostructures under pulsed illumination is studied. Quantum oscillations in the photoconductivity are detected depending on the bias voltage with the period independent of the light wavelength, as well as an oscillating component of the relaxation curves caused by modulation of the recombination rate at the edge of a triangular quantum well in the undoped i layer, as in the case of photoconductivity oscillations. The common nature of oscillations of the steady-state photoconductivity and relaxation curves under pulsed illumination is directly confirmed by the lack of an oscillating component in both types of dependences of some studied p–i–n heterostructures. Simultaneous suppression of the observed oscillations of dependences of both types as the temperature increases to 80 K also confirms the proposed mechanism of their formation. The dependences of these oscillations on the magnetic field and light flux power are studied. Oscillation-amplitude suppression in a magnetic field of ~2 T perpendicular to the current is caused by the effect of the Lorentz force on the ballistic motion of carriers in the triangular-quantum-well region.


Plasma ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 201-221 ◽  
Author(s):  
Hamidreza Hajihoseini ◽  
Martin Čada ◽  
Zdenek Hubička ◽  
Selen Ünaldi ◽  
Michael A. Raadu ◽  
...  

We explored the effect of magnetic field strength | B | and geometry (degree of balancing) on the deposition rate and ionized flux fraction F flux in dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) when depositing titanium. The HiPIMS discharge was run in two different operating modes. The first one we refer to as “fixed voltage mode” where the cathode voltage was kept fixed at 625 V while the pulse repetition frequency was varied to achieve the desired time average power (300 W). The second mode we refer to as “fixed peak current mode” and was carried out by adjusting the cathode voltage to maintain a fixed peak discharge current and by varying the frequency to achieve the same average power. Our results show that the dcMS deposition rate was weakly sensitive to variations in the magnetic field while the deposition rate during HiPIMS operated in fixed voltage mode changed from 30% to 90% of the dcMS deposition rate as | B | decreased. In contrast, when operating the HiPIMS discharge in fixed peak current mode, the deposition rate increased only slightly with decreasing | B | . In fixed voltage mode, for weaker | B | , the higher was the deposition rate, the lower was the F flux . In the fixed peak current mode, both deposition rate and F flux increased with decreasing | B | . Deposition rate uniformity measurements illustrated that the dcMS deposition uniformity was rather insensitive to changes in | B | while both HiPIMS operating modes were highly sensitive. The HiPIMS deposition rate uniformity could be 10% lower or up to 10% higher than the dcMS deposition rate uniformity depending on | B | and in particular the magnetic field topology. We related the measured quantities, the deposition rate and ionized flux fraction, to the ionization probability α t and the back attraction probability of the sputtered species β t . We showed that the fraction of the ions of the sputtered material that escape back attraction increased by 30% when | B | was reduced during operation in fixed peak current mode while the ionization probability of the sputtered species increased with increasing | B | , due to increased discharge current, when operating in fixed voltage mode.


2020 ◽  
Vol 117 (11) ◽  
pp. 5638-5643 ◽  
Author(s):  
Peihao Huang ◽  
Hanyu Liu ◽  
Jian Lv ◽  
Quan Li ◽  
Chunhong Long ◽  
...  

The anomalous nondipolar and nonaxisymmetric magnetic fields of Uranus and Neptune have long challenged conventional views of planetary dynamos. A thin-shell dynamo conjecture captures the observed phenomena but leaves unexplained the fundamental material basis and underlying mechanism. Here we report extensive quantum-mechanical calculations of polymorphism in the hydrogen–oxygen system at the pressures and temperatures of the deep interiors of these ice giant planets (to >600 GPa and 7,000 K). The results reveal the surprising stability of solid and fluid trihydrogen oxide (H3O) at these extreme conditions. Fluid H3O is metallic and calculated to be stable near the cores of Uranus and Neptune. As a convecting fluid, the material could give rise to the magnetic field consistent with the thin-shell dynamo model proposed for these planets. H3O could also be a major component in both solid and superionic forms in other (e.g., nonconvecting) layers. The results thus provide a materials basis for understanding the enigmatic magnetic-field anomalies and other aspects of the interiors of Uranus and Neptune. These findings have direct implications for the internal structure, composition, and dynamos of related exoplanets.


When a current is passed through two equal coaxial coils so that the component of the magnetic fields parallel to the common axis add, there is a circle, mid-way between the two coils, at which the magnetic field is zero. At all points in the plane of that circle lying outside it, the field of force is in one direction, and at all points within the circle it is in the opposite direction. It is evident, therefore, that if a coaxial turn of wire be placed in the plane of the circle, the mutual inductance between the two coils will be a maximum, when the wire coincides with the circle, and any small change in the radius of the turn will affect the value of the mutual inductance only to the second order of small quantities.


Author(s):  
L. A. Knauss ◽  
B. M. Frazier ◽  
A. B. Cawthorne ◽  
E. Budiarto ◽  
R. Crandall ◽  
...  

Abstract With the arrival of flip-chip packaging, present tools and techniques are having increasing difficulty meeting failure-analysis needs. Recently a magneticfield imaging system has been used to localize shorts in buried layers of both packages and dies. Until now, these shorts have been powered directly through simple connections at the package. Power shorts are examples of direct shorts that can be powered through connections to Vdd and Vss at the package level. While power shorts are common types of failure, equally important are defects such as logic shorts, which cannot be powered through simple package connections. These defects must be indirectly activated by driving the part through a set of vectors. This makes the magnetic-field imaging process more complicated due to the large background currents present along with the defect current. Magnetic-field imaging is made possible through the use of a SQUID (Superconducting Quantum Interference Device), which is a very sensitive magnetic sensor that can image magnetic fields generated by magnetic materials or currents (such as those in an integrated circuit). The current-density distribution in the sample can then be calculated from the magnetic-field image revealing the locations of shorts and other current anomalies. Presented here is the application of a SQUID-based magnetic-field imaging system for isolation of indirect shorts. This system has been used to investigate shorts in two flip-chip-packaged SRAMs. Defect currents as small as 38 μA were imaged in a background of 1 A. The measurements were made using a lock-in thechnique and image subtraction. The magnetic-field image from one sample is compared with the results from a corresponding infrared-microscope image.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350007 ◽  
Author(s):  
LEILA SAFARI ◽  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a novel first-order current-mode (CM) electronically tunable all-pass filter including one grounded capacitor and two dual-output current followers (DO-CFs) is presented. The used DO-CFs are implemented using only 10 MOS transistors granting the proposed CM all-pass filter extremely simple structure. The proposed filter is suitable for integrated circuit (IC) fabrication because it employs only a grounded capacitor and is free from passive component matching conditions. Interestingly the introduced configuration uses minimum number of components compared to other works. It also offers other interesting advantages such as, alleviating all disadvantages associated with the use of resistors, easy cascadability and satisfies all technology requirements such as small sizing, simple realization, low voltage and low power operation. Additionally, the circuit parameters can be easily set by adjusting control voltages. Most favorably, the proposed CM all-pass filter can be simply used as a voltage-mode (VM) all-pass filter with outstanding properties of adjustable gain and tunability. To further show the versatility of the proposed structure a sinusoidal oscillator is also derived from presented CM all-pass filter. Nonideal gain and parasitic impedance effects on developed CM filter are discussed. Finally, simulation results with SPICE program are included to confirm the theory.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 710
Author(s):  
Siya Lozanova ◽  
Ivan Kolev ◽  
Avgust Ivanov ◽  
Chavdar Roumenin

A novel coupling of a pair of identical two-contact (2C) magnetoresistors transformed into an in-plane sensitive Hall device is presented. The ohmic contacts are cross-linked, also adding a load resistor bridge, providing for constant current mode of operation and eliminating the inevitable parasitic offset. This silicon configuration, apart from its simplified layout, has linear and odd output voltage as a function of the magnetic field and current. The quadratic and even magnetoresistance in the two parts of this innovative device is completely compensated, which ensures high measurement accuracy alongside with identification of the magnetic field polarity. The experimental prototypes feature sensitivity of 110 V/AT. The mean lowest detected magnetic induction B at supply current of 3 mA over frequency range f ≤ 100 Hz at a signal-to-noise ratio equal to unity is Bmin ≈ 10 μT. Тhe high performance and the complete electrical, temperature and technological matching of the parts of this unusual Hall device make it very promising for many practical applications.


Sign in / Sign up

Export Citation Format

Share Document