scholarly journals A Deep Learning Framework for Intrusion Detection and Multimodal Biometric Image Authentication

Author(s):  
M. Gayathri ◽  
C. Malathy

Nowadays, a demand is increased all over the world in the field of information security and security regulations. Intrusion detection (ID) plays a significant role in providing security to the information, and it is an important technology to identify various threats in network during transmission of information. The proposed system is to develop a two-layer security model: (1) Intrusion Detection, (2) Biometric Multimodal Authentication. In this research, an Improved Recurrent Neural Network with Bi directional Long Short-Term Memory (I-RNN-BiLSTM) is proposed, where the performance of the network is improved by introducing hybrid sigmoid-tanh activation function. The intrusion detection is performed using I-RNN-BiLSTM to classify the NSL-KDD dataset. To develop the biometric multimodal authentication system, three biometric images of face, iris, and fingerprint are considered and combined using Shuffling algorithm. The features are extracted by Gabor, Canny Edge, and Minutiae for face, iris, and fingerprint, respectively. The biometric multimodal authentication is performed by the proposed I-RNN-BiLSTM. The performance of the proposed I-RNN-BiLSTM has been analysed through different metrics like accuracy, f-score, and confusion matrix. The simulation results showed that the proposed system gives better results for intrusion detection. Proposed model attains an accuracy of 98% for the authentication process and accuracy of 98.94% for the intrusion detection process.

Author(s):  
Shirien K A ◽  
Neethu George ◽  
Surekha Mariam Varghese

Descriptive answer script assessment and rating program is an automated framework to evaluate the answer scripts correctly. There are several classification schemes in which a piece of text is evaluated on the basis of spelling, semantics and meaning. But, lots of these aren’t successful. Some of the models available to rate the response scripts include Simple Long Short Term Memory (LSTM), Deep LSTM. In addition to that Convolution Neural Network and Bi-directional LSTM is considered here to refine the result. The model uses convolutional neural networks and bidirectional LSTM networks to learn local information of words and capture long-term dependency information of contexts on the Tensorflow and Keras deep learning framework. The embedding semantic representation of texts can be used for computing semantic similarities between pieces of texts and to grade them based on the similarity score. The experiment used methods for data optimization, such as data normalization and dropout, and tested the model on an Automated Student Evaluation Short Response Scoring, a commonly used public dataset. By comparing with the existing systems, the proposed model has achieved the state-of-the-art performance and achieves better results in the accuracy of the test dataset.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhenbo Lu ◽  
Wei Zhou ◽  
Shixiang Zhang ◽  
Chen Wang

Quick and accurate crash detection is important for saving lives and improved traffic incident management. In this paper, a feature fusion-based deep learning framework was developed for video-based urban traffic crash detection task, aiming at achieving a balance between detection speed and accuracy with limited computing resource. In this framework, a residual neural network (ResNet) combined with attention modules was proposed to extract crash-related appearance features from urban traffic videos (i.e., a crash appearance feature extractor), which were further fed to a spatiotemporal feature fusion model, Conv-LSTM (Convolutional Long Short-Term Memory), to simultaneously capture appearance (static) and motion (dynamic) crash features. The proposed model was trained by a set of video clips covering 330 crash and 342 noncrash events. In general, the proposed model achieved an accuracy of 87.78% on the testing dataset and an acceptable detection speed (FPS > 30 with GTX 1060). Thanks to the attention module, the proposed model can capture the localized appearance features (e.g., vehicle damage and pedestrian fallen-off) of crashes better than conventional convolutional neural networks. The Conv-LSTM module outperformed conventional LSTM in terms of capturing motion features of crashes, such as the roadway congestion and pedestrians gathering after crashes. Compared to traditional motion-based crash detection model, the proposed model achieved higher detection accuracy. Moreover, it could detect crashes much faster than other feature fusion-based models (e.g., C3D). The results show that the proposed model is a promising video-based urban traffic crash detection algorithm that could be used in practice in the future.


Author(s):  
Vishaal Saravanan Et.al

Excited by ground-breaking progress in automatic code generation, machine translation, and computer vision, further simplify web design workflow by making it easier and productive. A Model architecture is proposed for the generation of static web templates from hand-drawn images. The model pipeline uses the word-embedding technique succeeded by long short-term memory (LSTM) for code snippet prediction. Also, canny edge detection algorithm fitted with VGG19 convolutional neural net (CNN) and attention-based LSTM for web template generation. Extracted features are concatenated, and a terminal LSTM with a SoftMax function is called for final prediction. The proposed model is validated with a benchmark based on the BLUE score, and performance improvement is compared with the existing image generation algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chirag Roy ◽  
Satyendra Singh Yadav ◽  
Vipin Pal ◽  
Mangal Singh ◽  
Sarat Kumar Patra ◽  
...  

With rapid advancement in artificial intelligence (AI) and machine learning (ML), automatic modulation classification (AMC) using deep learning (DL) techniques has become very popular. This is even more relevant for Internet of things (IoT)-assisted wireless systems. This paper presents a lightweight, ensemble model with convolution, long short term memory (LSTM), and gated recurrent unit (GRU) layers. The proposed model is termed as deep recurrent convoluted network with additional gated layer (DRCaG). It has been tested on a dataset derived from the RadioML2016(b) and comprises of 8 different modulation types named as BPSK, QPSK, 8-PSK, 16-QAM, 4-PAM, CPFSK, GFSK, and WBFM. The performance of the proposed model has been presented through extensive simulation in terms of training loss, accuracy, and confusion matrix with variable signal to noise ratio (SNR) ranging from −20 dB to +20 dB and it demonstrates the superiority of DRCaG vis-a-vis existing ones.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 772 ◽  
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Sign in / Sign up

Export Citation Format

Share Document