GAIN-QoS: A Novel QoS Prediction Model for Edge Computing

Author(s):  
Jiwon Choi ◽  
Jaewook Lee ◽  
Duksan Ryu ◽  
Suntae Kim ◽  
Jongmoon Baik

With recent increases in the number of network-connected devices, the number of edge computing services that provide similar functions has increased. Therefore, it is important to recommend an optimal edge computing service, based on quality-of-service (QoS). However, in the real world, there is a cold-start problem in QoS data: highly sparse invocation. Therefore, it is difficult to recommend a suitable service to the user. Deep learning techniques were applied to address this problem, or context information was used to extract deep features between users and services. However, edge computing environment has not been considered in previous studies. Our goal is to predict the QoS values in real edge computing environments with improved accuracy. To this end, we propose a GAIN-QoS technique. It clusters services based on their location information, calculates the distance between services and users in each cluster, and brings the QoS values of users within a certain distance. We apply a Generative Adversarial Imputation Nets (GAIN) model and perform QoS prediction based on this reconstructed user service invocation matrix. When the density is low, GAIN-QoS shows superior performance to other techniques. In addition, the distance between the service and user slightly affects performance. Thus, compared to other methods, the proposed method can significantly improve the accuracy of QoS prediction for edge computing, which suffers from cold-start problem.

Author(s):  
Zhi-Zhong Liu ◽  
Quan Z. Sheng ◽  
Xiaofei Xu ◽  
DianHui Chu ◽  
Wei Emma Zhang

2020 ◽  
Vol 10 (7) ◽  
pp. 2483 ◽  
Author(s):  
Giovanni Pepe ◽  
Leonardo Gabrielli ◽  
Stefano Squartini ◽  
Luca Cattani

Audio equalization is an active research topic aiming at improving the audio quality of a loudspeaker system by correcting the overall frequency response using linear filters. The estimation of their coefficients is not an easy task, especially in binaural and multipoint scenarios, due to the contribution of multiple impulse responses to each listening point. This paper presents a deep learning approach for tuning filter coefficients employing three different neural networks architectures—the Multilayer Perceptron, the Convolutional Neural Network, and the Convolutional Autoencoder. Suitable loss functions are proposed for each architecture, and are formulated in terms of spectral Euclidean distance. The experiments were conducted in the automotive scenario, considering several loudspeakers and microphones. The obtained results show that deep learning techniques give superior performance compared to baseline methods, achieving almost flat magnitude frequency response.


Author(s):  
Feidu Akmel ◽  
Ermiyas Birihanu ◽  
Bahir Siraj

Software systems are any software product or applications that support business domains such as Manufacturing,Aviation, Health care, insurance and so on.Software quality is a means of measuring how software is designed and how well the software conforms to that design. Some of the variables that we are looking for software quality are Correctness, Product quality, Scalability, Completeness and Absence of bugs, However the quality standard that was used from one organization is different from other for this reason it is better to apply the software metrics to measure the quality of software. Attributes that we gathered from source code through software metrics can be an input for software defect predictor. Software defect are an error that are introduced by software developer and stakeholders. Finally, in this study we discovered the application of machine learning on software defect that we gathered from the previous research works.


Sign in / Sign up

Export Citation Format

Share Document