scholarly journals Designing Audio Equalization Filters by Deep Neural Networks

2020 ◽  
Vol 10 (7) ◽  
pp. 2483 ◽  
Author(s):  
Giovanni Pepe ◽  
Leonardo Gabrielli ◽  
Stefano Squartini ◽  
Luca Cattani

Audio equalization is an active research topic aiming at improving the audio quality of a loudspeaker system by correcting the overall frequency response using linear filters. The estimation of their coefficients is not an easy task, especially in binaural and multipoint scenarios, due to the contribution of multiple impulse responses to each listening point. This paper presents a deep learning approach for tuning filter coefficients employing three different neural networks architectures—the Multilayer Perceptron, the Convolutional Neural Network, and the Convolutional Autoencoder. Suitable loss functions are proposed for each architecture, and are formulated in terms of spectral Euclidean distance. The experiments were conducted in the automotive scenario, considering several loudspeakers and microphones. The obtained results show that deep learning techniques give superior performance compared to baseline methods, achieving almost flat magnitude frequency response.

Arthritis is an autoimmune disorder characterized by chronic synovial inflammation mainly leading to the destruction of joints and bone erosions. In aged people, arthritis is more common than any other disease, and it causes pain in the musculoskeletal system that lowers the quality of life of patients. The use of deep learning in medicine is increasing and has provided new avenues for research into a number of diseases. In this paper, we are using deep learning for detection of arthritis in finger joints from X-ray images of hand based on convolutional neural networks. For training 70 X-ray pictures are taken and for testing 10 X-ray pictures are taken. This system achieved more accuracy for test data sets. The proposed method will aid clinical researchers to learn more on arthritis.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2021 ◽  
Vol 11 (5) ◽  
pp. 2284
Author(s):  
Asma Maqsood ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Malaria is a disease activated by a type of microscopic parasite transmitted from infected female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. Recently, some automated methods have been proposed that exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep learning approaches modernize the world with their superior performance. Convolutional Neural Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden layers of the model without any handcrafting. The detection of malaria-infected red blood cells from segmented microscopic blood images using convolutional neural networks can assist in quick diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this paper are two-fold. First, we evaluate the performance of different existing deep learning models for efficient malaria detection. Second, we propose a customized CNN model that outperforms all observed deep learning models. It exploits the bilateral filtering and image augmentation techniques for highlighting features of red blood cells before training the model. Due to image augmentation techniques, the customized CNN model is generalized and avoids over-fitting. All experimental evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3279
Author(s):  
Maria Habib ◽  
Mohammad Faris ◽  
Raneem Qaddoura ◽  
Manal Alomari ◽  
Alaa Alomari ◽  
...  

Maintaining a high quality of conversation between doctors and patients is essential in telehealth services, where efficient and competent communication is important to promote patient health. Assessing the quality of medical conversations is often handled based on a human auditory-perceptual evaluation. Typically, trained experts are needed for such tasks, as they follow systematic evaluation criteria. However, the daily rapid increase of consultations makes the evaluation process inefficient and impractical. This paper investigates the automation of the quality assessment process of patient–doctor voice-based conversations in a telehealth service using a deep-learning-based classification model. For this, the data consist of audio recordings obtained from Altibbi. Altibbi is a digital health platform that provides telemedicine and telehealth services in the Middle East and North Africa (MENA). The objective is to assist Altibbi’s operations team in the evaluation of the provided consultations in an automated manner. The proposed model is developed using three sets of features: features extracted from the signal level, the transcript level, and the signal and transcript levels. At the signal level, various statistical and spectral information is calculated to characterize the spectral envelope of the speech recordings. At the transcript level, a pre-trained embedding model is utilized to encompass the semantic and contextual features of the textual information. Additionally, the hybrid of the signal and transcript levels is explored and analyzed. The designed classification model relies on stacked layers of deep neural networks and convolutional neural networks. Evaluation results show that the model achieved a higher level of precision when compared with the manual evaluation approach followed by Altibbi’s operations team.


Author(s):  
Annunziata Paviglianiti ◽  
Vincenzo Randazzo ◽  
Stefano Villata ◽  
Giansalvo Cirrincione ◽  
Eros Pasero

AbstractContinuous vital signal monitoring is becoming more relevant in preventing diseases that afflict a large part of the world’s population; for this reason, healthcare equipment should be easy to wear and simple to use. Non-intrusive and non-invasive detection methods are a basic requirement for wearable medical devices, especially when these are used in sports applications or by the elderly for self-monitoring. Arterial blood pressure (ABP) is an essential physiological parameter for health monitoring. Most blood pressure measurement devices determine the systolic and diastolic arterial blood pressure through the inflation and the deflation of a cuff. This technique is uncomfortable for the user and may result in anxiety, and consequently affect the blood pressure and its measurement. The purpose of this paper is the continuous measurement of the ABP through a cuffless, non-intrusive approach. The approach of this paper is based on deep learning techniques where several neural networks are used to infer ABP, starting from photoplethysmogram (PPG) and electrocardiogram (ECG) signals. The ABP was predicted first by utilizing only PPG and then by using both PPG and ECG. Convolutional neural networks (ResNet and WaveNet) and recurrent neural networks (LSTM) were compared and analyzed for the regression task. Results show that the use of the ECG has resulted in improved performance for every proposed configuration. The best performing configuration was obtained with a ResNet followed by three LSTM layers: this led to a mean absolute error (MAE) of 4.118 mmHg on and 2.228 mmHg on systolic and diastolic blood pressures, respectively. The results comply with the American National Standards of the Association for the Advancement of Medical Instrumentation. ECG, PPG, and ABP measurements were extracted from the MIMIC database, which contains clinical signal data reflecting real measurements. The results were validated on a custom dataset created at Neuronica Lab, Politecnico di Torino.


2021 ◽  
Author(s):  
Vladislav Vasilevich Alekseev ◽  
Denis Mihaylovich Orlov ◽  
Dmitry Anatolevich Koroteev

Abstract The approaches of building and methods of using the digital core are currently developing rapidly. The use of these methods makes it possible to obtain petrophysical information by non-destructive methods quickly. Digital rock physics includes two main stages: constructing models and modeling various physical processes on the obtained models. Our work proposes using deep learning methods for mineral and pore space segmentation instead of classical methods such as threshold image processing. Deep neural networks have long been able to show their advantages in many areas of computer vision. This paper proposes and tests methods that help identify different minerals in images from a scanning electron microscope. We used images of rocks of the Achimov formation, which are arkoses, as samples. We tested various deep neural networks such as LinkNet, U-Net, ResUNet, and pix2pix and identified those that performed best in segmentation.


In late years, critical learning methodologies especially Convolutional Neural Networks have been utilized in different solicitations. CNN's have appeared to be a key capacity to ordinarily expel broad volumes of data from massive information. The uses of CNNs have inside and out ended up being useful especially in orchestrating ordinary pictures. Regardless, there have been essential obstacles in executing the CNNs in a restorative zone as a result of the nonattendance of genuine getting ready data. Consequently, general imaging benchmarks, for instance, Image Net have been conspicuously used in the restorative not too zone notwithstanding the way that they are perfect when appeared differently about the CNNs. In this paper, a comparative examination of LeNet, AlexNet, and GoogLeNet has been done. Starting there, the paper has proposed an improved hypothetical structure for requesting helpful life structures pictures using CNNs. In perspective on the proposed structure of the framework, the CNNs building are required to beat the previous three plans in requesting remedial pictures.


2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


Author(s):  
Elena Morotti ◽  
Davide Evangelista ◽  
Elena Loli Piccolomini

Deep Learning is developing interesting tools which are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their great potential. However, the commonly used architectures are very deep and, hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green-AI literature, we here propose a shallow neural network to perform an efficient Learned Post-Processing on images roughly reconstructed by the filtered backprojection algorithm. The results obtained on images from the training set and on unseen images, using both the non-expensive network and the widely used very deep ResUNet show that the proposed network computes images of comparable or higher quality in about one fourth of time.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


Sign in / Sign up

Export Citation Format

Share Document