scholarly journals Genetic variability of Indonesian Oryctes rhinoceros nudivirus (OrNV) as genus of Alphanudivirus

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Sat Rahayuwati ◽  
Yayi Munara Kusumah ◽  
Sudharto Prawirosukarto ◽  
Dadang ◽  
Teguh Santoso

Abstract. Rahayuwati S, Kusumah YM, Prawirosukarto S, Dadang, Santoso T. 2020. Genetic variability of Indonesian Oryctes rhinoceros nudivirus (OrNV) as genus of Alphanudivirus. Biodiversitas 21: 2047-2055. Oryctes rhinoceros nudivirus (OrNV) is known as a successful classical biological control agent. Recent reports have revealed differences in pathogenicity among OrNV isolates, with correlation suspected between virus virulence and genetic variability. The aim of the research is to study the genetic variability of OrNV isolates based on the DNA polymerase (DNA pol) gene and their phylogenetic relationship with Genus Alphanudivirus. Oryctes rhinoceros (Coleoptera: Scarabaeidae) as an OrNV host were collected from Sumatra, Belitung, Java, Kalimantan, and Sulawesi. Primers were designed to amplify complete gene of DNA pol. Sequencing, phylogenetic, and investigate genetic diversity scores were used to determine variability at nucleotide level. Five primers successfully amplified the entire DNA pol gene. Genetic variability of OrNV was high, from nine isolates found eight genetically different. Isolates could be divided into two groups of genetic diversity: high and low. High genetic diversity of OrNV supposed as an old population that occupied Sundaland and Wallacean paleogeography at first appearance in Miocene Era until early Pliocene 5 Mya. New population of OrNV had low genetic diversity were travel cross-island that supposed to correlate with oil palm plantation development and the genetic drift. The benefit information of the OrNV genetic variability is as preliminary guideline for virulence test. OrNV is a member of Nudiviridae family, Genus Alphanudivirus, and at recent moment they consist of eight species. Alphanudivirus infect Coleoptera, Diptera, Hemiptera and Orthoptera order that soil as immature niche may explain their closely related taxa.

Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


Open Medicine ◽  
2006 ◽  
Vol 1 (4) ◽  
pp. 392-398
Author(s):  
Kazima Bulayeva ◽  
John McGrath

AbstractWhile the season-of-birth effect is one of the most consistent epidemiological features of schizophrenia, there is a lack of consistency with respect to the interaction between season of birth and family history of schizophrenia. Apart from family history, measures related to consanguinity can be used as proxy markers of genomic heterogeneity. Thus, these measures may provide an alternate, indirect index of genetic susceptibility. We had the opportunity to explore the interaction between season of birth and measure of consanguinity in well-described genetic isolates in Daghestan, some of which are known for their relatively high prevalence of schizophrenia. Our previous population-genetic study showed Daghestan has an extremely high genetic diversity between the ethnic populations and a low genetic diversity within them. The isolates selected for this study include some with more than 200 and some with less than 100 generations of demographical history since their founding. Based on pedigrees of multiply-affected families, we found that among individuals with schizophrenia, the measure of consanguinity was significantly higher in the parents of those born in winter/spring compared to those born in summer/autumn. Furthermore, compared to summer/autumn born, winter/spring born individuals with schizophrenia had an earlier age-of-onset, and more prominent auditory hallucinations. Our results suggest that the offspring of consanguineous marriages, and thus those with reduced allelic heterogeneity, may be more susceptible to the environmental factor(s) underpinning the season-of-the effect in schizophrenia.


Parasitology ◽  
2020 ◽  
Vol 147 (13) ◽  
pp. 1532-1537 ◽  
Author(s):  
Juan C. Garcia-R ◽  
Murray P. Cox ◽  
David T. S. Hayman

AbstractParasites sometimes expand their host range and cause new disease aetiologies. Genetic changes can then occur due to host-specific adaptive alterations, particularly when parasites cross between evolutionarily distant hosts. Characterizing genetic variation in Cryptosporidium from humans and other animals may have important implications for understanding disease dynamics and transmission. We analyse sequences from four loci (gp60, HSP-70, COWP and actin) representing multiple Cryptosporidium species reported in humans. We predicted low genetic diversity in species that present unusual human infections due to founder events and bottlenecks. High genetic diversity was observed in isolates from humans of Cryptosporidium meleagridis, Cryptosporidium cuniculus, Cryptosporidium hominis and Cryptosporidium parvum. A deviation of expected values of neutrality using Tajima's D was observed in C. cuniculus and C. meleagridis. The high genetic diversity in C. meleagridis and C. cuniculus did not match our expectations but deviations from neutrality indicate a recent decrease in genetic variability through a population bottleneck after an expansion event. Cryptosporidium hominis was also found with a significant Tajima's D positive value likely caused by recent population expansion of unusual genotypes in humans. These insights indicate that changes in genetic diversity can help us to understand host-parasite adaptation and evolution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander M. Gaffke ◽  
Sharlene E. Sing ◽  
Tom L. Dudley ◽  
Daniel W. Bean ◽  
Justin A. Russak ◽  
...  

Abstract The northern tamarisk beetle Diorhabda carinulata (Desbrochers) was approved for release in the United States for classical biological control of a complex of invasive saltcedar species and their hybrids (Tamarix spp.). An aggregation pheromone used by D. carinulata to locate conspecifics is fundamental to colonization and reproductive success. A specialized matrix formulated for controlled release of this aggregation pheromone was developed as a lure to manipulate adult densities in the field. One application of the lure at onset of adult emergence for each generation provided long term attraction and retention of D. carinulata adults on treated Tamarix spp. plants. Treated plants exhibited greater levels of defoliation, dieback and canopy reduction. Application of a single, well-timed aggregation pheromone treatment per generation increased the efficacy of this classical weed biological control agent.


2017 ◽  
Vol 108 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Q. Li ◽  
S.V. Triapitsyn ◽  
C. Wang ◽  
W. Zhong ◽  
H.-Y. Hu

AbstractThe flee-weevil Orchestes steppensis Korotyaev (Coleoptera: Curculionidae) is a steppe eastern Palaearctic species, notable as a serious pest of elms (Ulmus spp., Ulmaceae), by feeding on the leaves (adults) or mining them heavily (larvae), especially of Ulmus pumila L. in Xinjiang, China. We have corrected the previous misidentifications of this weevil in China as O. alni (L.) or O. mutabilis Boheman and demonstrated that it is likely to be an invasive species in Xinjiang. Prior to this study, natural enemies of O. steppensis were unknown in Xinjiang. Resulting from field investigation and rearing in the laboratory during 2013–2016, seven parasitoid species were found to be primary and solitary, attacking larval and pupal stages of the host weevil. Pteromalus sp. 2 is the dominant species and also is the most competitive among the seven parasitoids, which could considered to be a perspective biological control agent of O. steppensis. Yet, the current control of this pest by the local natural enemies in Xinjiang is still currently inefficient, even though in 2016 parasitism was about 36% on U. pumila in Urumqi, so the potential for a classical biological control program against it needs to be further investigated, including an assessment of its parasitoids and other natural enemies in the native range of O. steppensis. The presented information on the natural enemies of this weevil can be also important for a potential classical biological control program against it in North America (Canada and USA), where it is a highly damaging and rapidly spreading invasive species.


Sign in / Sign up

Export Citation Format

Share Document