scholarly journals Anticipated climate changes reveal shifting in habitat suitability of high-altitude selaginellas in Java, Indonesia

2020 ◽  
Vol 21 (11) ◽  
Author(s):  
AHMAD DWI SETYAWAN ◽  
Jatna Supriatna ◽  
Nisyawati ◽  
Ilyas Nursamsi ◽  
SUTARNO SUTARNO ◽  
...  

Abstract. Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Sunarto, Pradan P, Budiharta S, Pitoyo A, Suhardono S, Setyono P, Indrawan M. 2020. Anticipated climate changes reveal shifting in habitat suitability of high-altitude selaginellas in Java, Indonesia. Biodiversitas 21: 5482-5497. High-altitude ecosystems with humid and cool climate are the preferred habitat for some Selaginella species (selaginellas). Such habitats are available in Java, Indonesia, which also has fertile soils with rich mineral contents resulted from volcanic activities. However, the high-altitude ecosystems in Java are threatened by various anthropogenic activities as well as changes in climate conditions, potentially affecting some Selaginella species. This study aimed to investigate the shift in suitable habitat of four species of high-altitude Selaginella spp. (Selaginella involvens, S. opaca, S. ornata, and S. remotifolia) in Java Island under current and future climate conditions predicted by several representative greenhouse gas concentration pathways. Presence data of Selaginella localities were collected from field survey between 2007 and 2014 across the island, as well as occurrence points from the Global Biodiversity Information Facility database. A total of 1,721 occurrence points data along with environmental and climate data were used to develop species distribution models using MaxEnt. Future habitat distributions were projected under four climate scenarios to see the shift in suitable habitat and altitudinal ranges. The results showed that the distribution of the four high-altitude Selaginella species are strongly influenced by altitude, annual average temperature, and annual rainfall. In the present time, 37.32% (48,974 km2) of the area of Java has been predicted to be suitable for high-altitude Selaginella. Under the optimistic climate scenario (RCP 2.6), the highly suitable area will likely to decrease by almost 35% in the year 2080, whereas the medium and low suitable areas will reduce by about 37.2% and 18.3%, respectively. Under the pessimistic scenario (RCP 8.5), about 21.2% of low suitable areas will be lost in 2080, whereas the medium and highly suitable areas are predicted to decrease by around 38.1% and 33.4%, respectively. Under the pessimistic scenario, there will be upward shift by 51.1 m in the year 2030 from the current’s mean altitude and will shift by almost 150 m in the year 2080. The maximum altitude of predicted suitable habitat is also predicted to increase to reach almost 3500 m asl in the year 2080. The results of this study imply that habitat shift of four high-altitude Selaginella species varies depending on the scenario, but in all cases, the losses are greater than gains.

2020 ◽  
Vol 641 ◽  
pp. 159-175
Author(s):  
J Runnebaum ◽  
KR Tanaka ◽  
L Guan ◽  
J Cao ◽  
L O’Brien ◽  
...  

Bycatch remains a global problem in managing sustainable fisheries. A critical aspect of management is understanding the timing and spatial extent of bycatch. Fisheries management often relies on observed bycatch data, which are not always available due to a lack of reporting or observer coverage. Alternatively, analyzing the overlap in suitable habitat for the target and non-target species can provide a spatial management tool to understand where bycatch interactions are likely to occur. Potential bycatch hotspots based on suitable habitat were predicted for cusk Brosme brosme incidentally caught in the Gulf of Maine American lobster Homarus americanus fishery. Data from multiple fisheries-independent surveys were combined in a delta-generalized linear mixed model to generate spatially explicit density estimates for use in an independent habitat suitability index. The habitat suitability indices for American lobster and cusk were then compared to predict potential bycatch hotspot locations. Suitable habitat for American lobster has increased between 1980 and 2013 while suitable habitat for cusk decreased throughout most of the Gulf of Maine, except for Georges Basin and the Great South Channel. The proportion of overlap in suitable habitat varied interannually but decreased slightly in the spring and remained relatively stable in the fall over the time series. As Gulf of Maine temperatures continue to increase, the interactions between American lobster and cusk are predicted to decline as cusk habitat continues to constrict. This framework can contribute to fisheries managers’ understanding of changes in habitat overlap as climate conditions continue to change and alter where bycatch interactions could occur.


2021 ◽  
Vol 42 (3(SI)) ◽  
pp. 806-811
Author(s):  
N.F. Khodri ◽  
◽  
T. Lihan ◽  
M.A. Mustapha ◽  
T.M. Taher ◽  
...  

Aim: This research assessed the distribution of leopard to predict the habitat suitability in Taman Negara National Park and adjacent forest area. Methodology: Environmental factors for habitat suitability were derived from geographical information system (GIS) data such as elevation, slope, land-use, distance from urban and distance from river. Leopard presence data from 1993 to 2008 were integrated with the environmental parameters using maximum entropy (MaxEnt) modeling to assess habitat suitability across the study area. Results: The results showed that distance from river contributed the most (39.3%) in the habitat suitability modeling followed by distance from urban (31.4%), elevation (12.3%), land use types (10.1%), and slope (6.9%). Distance from river and urban showed highest contribution that influenced leopard distribution in which most suitable habitat occurred in proximity with river and further from urban. Habitat suitability of leopard were distributed among 48% over 2,218,389 ha of the study area. Interpretation: The findings of this study provides knowledge on how the species move and exploit different habitat niches for more effective conservation management. It provide models for future wildlife conservation and urban planning.


2021 ◽  
Vol 8 (4) ◽  
pp. 2903-2909
Author(s):  
Menzuela Hidalgo Ancheta

The identification of potential habitats of the largest and smallest flowering parasitic Rafflesia in the Philippines is a prerequisite in conservation of species and preservation of their habitats which have been being degraded due to anthropogenic activities and climate change. This research aimed at revealing the possible habitat suitability for Rafflesia schadenbergiana Göppert ex Hieron and Rafflesia consueloae Galindon, Ong Fernando throughout the Philippines using Geographic Information Systems (GIS). The selection criteria in this research were based on four parameters (elevation, annual rainfall, temperature, and land use / land classification) identified during the extensive literature review. The generated map shows that the optimal growth of the Rafflesia schadenbergiana can be observed with a temperature range of 20–22°C while Rafflesia consueloae can thrive within 24°C to 25°C. The importance of these criteria was evaluated using a pairwise comparison method and the final weight was computed for each criterion. Setting up of the values suiting the subject species was followed by weighted overlay analysis. The final output is the distribution and habitat suitability of the subject species.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 443
Author(s):  
Jesse A. Tabor ◽  
Jonathan B. Koch

Climate change is predicted to increase the risk of biological invasions by increasing the availability of climatically suitable regions for invasive species. Endemic species on oceanic islands are particularly sensitive to the impact of invasive species due to increased competition for shared resources and disease spread. In our study, we used an ensemble of species distribution models (SDM) to predict habitat suitability for invasive bees under current and future climate scenarios in Hawai’i. SDMs projected on the invasive range were better predicted by georeferenced records from the invasive range in comparison to invasive SDMs predicted by records from the native range. SDMs estimated that climatically suitable regions for the eight invasive bees explored in this study will expand by ~934.8% (±3.4% SE). Hotspots for the invasive bees are predicted to expand toward higher elevation regions, although suitable habitat is expected to only progress up to 500 m in elevation in 2070. Given our results, it is unlikely that invasive bees will interact directly with endemic bees found at >500 m in elevation in the future. Management and conservation plans for endemic bees may be improved by understanding how climate change may exacerbate negative interactions between invasive and endemic bee species.


2021 ◽  
Author(s):  
Thomas Aubry ◽  
Jamie Farquharson ◽  
Colin Rowell ◽  
Sebastian Watt ◽  
Virginie Pinel ◽  
...  

The impacts of volcanic eruptions on climate are increasingly well understood, but the mirror question of how climate changes affect volcanic systems and processes, which we term “climate-volcano impacts”, remains understudied. Accelerating research on this topic is critical in view of rapid climate change driven by anthropogenic activities. Over the last two decades, we have improved our understanding of how mass distribution on the Earth’s surface, in particular changes in ice and water distribution linked to glacial cycles, affects mantle melting, crustal magmatic processing and eruption rates. New hypotheses on the impacts of climate change on eruption processes have also emerged, including how eruption style and volcanic plume rise are affected by changing surface and atmospheric conditions, and how volcanic sulfate aerosol lifecycle, radiative forcing and climate impacts are modulated by background climate conditions. Future improvements in past climate reconstructions and current climate observations, volcanic eruption records and volcano monitoring, and numerical models will contribute to boost research on climate-volcano impacts. Important mechanisms remain to be explored, such as how changes in atmospheric circulation and precipitation will affect the volcanic ash lifecycle. Fostering a holistic and interdisciplinary approach to climate-volcano impacts is critical to gain a full picture of how ongoing climate changes may affect the environmental and societal impacts of volcanic activity.


Mammalia ◽  
2020 ◽  
Vol 84 (5) ◽  
pp. 413-420 ◽  
Author(s):  
Germán Garrote ◽  
Javier Fernández-López ◽  
Eva Rojas ◽  
Guillermo López ◽  
Miguel Angel Simón

AbstractThe creation of new populations through reintroductions in their former range is still necessary for the long-term conservation of the Iberian lynx (Lynx pardinus). A large-scale assessment of habitat suitability is a necessary prerequisite for evaluating the possibility of carrying out lynx reintroductions. We modelled habitat suitability for the Iberian lynx in the Iberian Peninsula using MaxEnt. Lynx presence data for 2010–2013 from Andujar-Cardeña and Doñana populations were used. Habitat variables were quantified using the CORINE Land Cover. This habitat suitability model predicted an environmentally suitable area of 87,747 km2, which represents 14.08% of the whole Iberian Peninsula. Of the total suitable habitat identified, 45% is located in a large continuous area in the south-western quadrant coinciding with the historical range of the species in the mid-20th century. However, there are also relevant patches mainly in the north-eastern quadrant. About 55% of the potential area suitable for the lynx falls outside protected areas. If Iberian lynx populations are to attain levels that will facilitate their long-term survival, it will be necessary to consider potential habitat for the species throughout the whole of the Iberian Peninsula.


2019 ◽  
Vol 374 (1788) ◽  
pp. 20190215 ◽  
Author(s):  
Sophie Monsarrat ◽  
Peter Novellie ◽  
Ian Rushworth ◽  
Graham Kerley

Setting appropriate conservation measures to halt the loss of biodiversity requires a good understanding of species' habitat requirements and potential distribution. Recent (past few decades) ecological data are typically used to estimate and understand species’ ecological niches. However, historical local extinctions may have truncated species–environment relationships, resulting in a biased perception of species' habitat preferences. This may result in incorrect assessments of the area potentially available for their conservation. Incorporating long-term (centuries-old) occurrence records with recent records may provide better information on species–environment relationships and improve the modelling and understanding of habitat suitability. We test whether neglecting long-term occurrence records leads to an underestimation of species’ historical niche and potential distribution and identify which species are more vulnerable to this effect. We compare outputs of species distribution models and niche hypervolumes built using recent records only with those built using both recent and long-term (post-1500) records, for a set of 34 large mammal species in South Africa. We find that, while using recent records only is adequate for some species, adding historical records in the analyses impacts estimates of the niche and habitat suitability for 12 species (34%) in our dataset, and that this effect is significantly higher for carnivores. These results show that neglecting long-term biodiversity records in spatial analyses risks misunderstanding, and generally underestimating, species' niches, which in turn may lead to ill-informed management decisions, with significant implications for the effectiveness of conservation efforts. This article is part of a discussion meeting issue ‘The past is a foreign country: how much can the fossil record actually inform conservation?’


2021 ◽  
Author(s):  
Sabine Fink ◽  
Erik van Rooijen ◽  
Davide Vanzo ◽  
David F. Vetsch ◽  
Annunziato Siviglia ◽  
...  

<p>The distribution of sessile riparian plant species and their habitats along riverways are highly dependent on river dynamics and connectivity. River restoration and conservation of riparian plant species rely on expert knowledge and more recently also on modelling approaches to predict species’ occurrence. Ecological modelling on habitat suitability for terrestrial species is usually based on climatic and topographic features, whilst river hydrodynamics is rarely considered.</p><p>Our study aims at predicting suitable habitat for a characteristic pioneer species for dynamic riverine habitats, the German Tamarisk (<em>Myricaria</em> <em>germanica</em>). Habitat predictions are tested in a case study on a floodplain along Moesa river in canton Grisons in South-East Switzerland. We link two modeling approaches having two different spatial scales using a hierarchical process. First, we define a large-scale habitat suitability matrix based on climatic, geological and topographic predictors. Using a two-dimensional hydrodynamic model, inundation frequency maps and flood level maps for several significant months for German Tamarisk establishment are constructed, to further refine the niche for the riparian plant.</p><p>The predicted habitat suitability is evaluated with species presence data for both adult and offspring plants. Our results allow gaining insights into the importance of linking ecological and hydraulic models having different spatial and temporal scales, for more refined predictions of riparian species distribution.</p>


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sayyad Sheykhi Ilanloo ◽  
Sohrab Ashrafi ◽  
Afshin Alizadeh Shabani

Identifying suitable habitats of species is essential knowledge to conserve them successfully. Human activities causes the reduction of population size and habitat suitability of many species. Red-backed Shrike is a widespread in western Palearctic. However, the population of this specie has declined in its geographical range due to the loss of suitable habitats. Therefore, it is necessary to identify its suitable habitats and factors affecting species habitat suitability and to protect its reduction population size. The aim of the present study was to identify the suitable habitat of the Red-backed Shrike and determine the most important predictors of its suitable habitat in Irano-Anatolian biodiversity hotspot. To achieve this goal, species presence points were first collected and seven environmental variables related to climate, topography and anthropogenic activities, were used to construct the species habitat suitable model. Models were built using five distribution modeling methods: Maxent, GAP, GLM, RF and GBM in sdm package. Then the models were Ensemble from 5 different models and the final model was constructed. The results of this study showed that the most suitable habitats of this species are in the western and northern parts of the area of study. The mean annual temperature with 41% contribution was the most important variable in constructing the habitat suitability model for this specie. In addition, climate variables with 75% contribution were identified as the most important habitat suitability factor for this specie. Also in relation to conservation of the Red-backed Shrike species in the Irano-Anatolian region, it can be stated that the extent of distribution and presence of this specie has been extended to the northern latitudes due to climate change. As a result, the temperature and climate factor should be given special attention in the management of bird habitats in this area. 


2019 ◽  
Author(s):  
Sophie Monsarrat ◽  
Peter Novellie ◽  
Ian Rushworth ◽  
Graham Kerley

ABSTRACTSetting appropriate conservation measures to halt the loss of biodiversity requires a good understanding of species’ habitat requirements and potential distribution. Recent (past few decades) ecological data are typically used to estimate and understand species’ ecological niche. However, historical local extinctions may have truncated species-environment relationships, resulting in a biased perception of species’ habitat preferences. This may result in incorrect assessments of the area potentially available for their conservation. Incorporating long-term (centuries-old) occurrence records with recent records may provide better information on species-environment relationships and improve the modeling and understanding of habitat suitability. We test whether neglecting long-term occurrence records leads to an underestimation of species’ historical niche and potential distribution and identify which species are more vulnerable to this effect. We compare outputs of species distribution models and niche hypervolumes built using recent records only with those built using both recent and long-term (post-1500) records, for a set of 34 large mammal species in South Africa. We find that, while using recent records only is adequate for some species, adding historical records in the analyses impacts estimates of the niche and habitat suitability for fourteen species (41%) in our dataset, and that this effect is significantly higher for carnivores. These results show that neglecting long-term biodiversity records in spatial analyses risks misunderstanding, and generally underestimating, species’ niche, which in turn may lead to ill-informed management decisions, with significant implications for the effectiveness of conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document