scholarly journals Comparison of Random Forest, Logistic Regression, and MultilayerPerceptron Methods on Classification of Bank Customer Account Closure

2021 ◽  
Vol 4 (1) ◽  
pp. 14
Author(s):  
Husna Afanyn Khoirunissa ◽  
Amanda Rizky Widyaningrum ◽  
Annisa Priliya Ayu Maharani

<p>The Bank is a business entity that is dealing with money, accepting deposits from customers, providing funds for each withdrawal, billing checks on the customer's orders, giving credit and or embedding the excess deposits until required for repayment. The purpose of this research is to determine the influence of age, gender, country, customer credit score, number of bank products used by the customer, and the activation of the bank members in the decision to choose to continue using the bank account that he has retained or closed the bank account. The data in this research used 10,000 respondents originating from France, Spain, and Germany. The method used is data mining with early stage preprocessing to clean data from outlier and missing value and feature selection to select important attributes. Then perform the classification using three methods, which are Random Forest, Logistic Regression, and Multilayer Perceptron. The results of this research showed that the model with Multilayer Perceptron method with 10 folds Cross Validation is the best model with 85.5373% accuracy.</p><strong>Keywords:</strong> bank customer, random forest, logistic regression, multilayer perceptron

Author(s):  
VLADIMIR NIKULIN ◽  
TIAN-HSIANG HUANG ◽  
GEOFFREY J. MCLACHLAN

The method presented in this paper is novel as a natural combination of two mutually dependent steps. Feature selection is a key element (first step) in our classification system, which was employed during the 2010 International RSCTC data mining (bioinformatics) Challenge. The second step may be implemented using any suitable classifier such as linear regression, support vector machine or neural networks. We conducted leave-one-out (LOO) experiments with several feature selection techniques and classifiers. Based on the LOO evaluations, we decided to use feature selection with the separation type Wilcoxon-based criterion for all final submissions. The method presented in this paper was tested successfully during the RSCTC data mining Challenge, where we achieved the top score in the Basic track.


2016 ◽  
Vol 51 (20) ◽  
pp. 2853-2862 ◽  
Author(s):  
Serkan Ballı

The aim of this study is to diagnose and classify the failure modes for two serial fastened sandwich composite plates using data mining techniques. The composite material used in the study was manufactured using glass fiber reinforced layer and aluminum sheets. Obtained results of previous experimental study for sandwich composite plates, which were mechanically fastened with two serial pins or bolts were used for classification of failure modes. Furthermore, experimental data from previous study consists of different geometrical parameters for various applied preload moments as 0 (pinned), 2, 3, 4, and 5 Nm (bolted). In this study, data mining methods were applied by using these geometrical parameters and pinned/bolted joint configurations. Therefore, three geometrical parameters and 100 test data were used for classification by utilizing support vector machine, Naive Bayes, K-Nearest Neighbors, Logistic Regression, and Random Forest methods. According to experiments, Random Forest method achieved better results than others and it was appropriate for diagnosing and classification of the failure modes. Performances of all data mining methods used were discussed in terms of accuracy and error ratios.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3044-3044
Author(s):  
David Haan ◽  
Anna Bergamaschi ◽  
Yuhong Ning ◽  
William Gibb ◽  
Michael Kesling ◽  
...  

3044 Background: Epigenomics assays have recently become popular tools for identification of molecular biomarkers, both in tissue and in plasma. In particular 5-hydroxymethyl-cytosine (5hmC) method, has been shown to enable the epigenomic regulation of gene expression and subsequent gene activity, with different patterns, across several tumor and normal tissues types. In this study we show that 5hmC profiles enable discrete classification of tumor and normal tissue for breast, colorectal, lung ovary and pancreas. Such classification was also recapitulated in cfDNA from patient with breast, colorectal, lung, ovarian and pancreatic cancers. Methods: DNA was isolated from 176 fresh frozen tissues from breast, colorectal, lung, ovary and pancreas (44 per tumor per tissue type and up to 11 tumor tissues for each stage (I-IV)) and up to 10 normal tissues per tissue type. cfDNA was isolated from plasma from 783 non-cancer individuals and 569 cancer patients. Plasma-isolated cfDNA and tumor genomic DNA, were enriched for the 5hmC fraction using chemical labelling, sequenced, and aligned to a reference genome to construct features sets of 5hmC patterns. Results: 5hmC multinomial logistic regression analysis was employed across tumor and normal tissues and identified a set of specific and discrete tumor and normal tissue gene-based features. This indicates that we can classify samples regardless of source, with a high degree of accuracy, based on tissue of origin and also distinguish between normal and tumor status.Next, we employed a stacked ensemble machine learning algorithm combining multiple logistic regression models across diverse feature sets to the cfDNA dataset composed of 783 non cancers and 569 cancers comprising 67 breast, 118 colorectal, 210 Lung, 71 ovarian and 100 pancreatic cancers. We identified a genomic signature that enable the classification of non-cancer versus cancers with an outer fold cross validation sensitivity of 49% (CI 45%-53%) at 99% specificity. Further, individual cancer outer fold cross validation sensitivity at 99% specificity, was measured as follows: breast 30% (CI 119% -42%); colorectal 41% (CI 32%-50%); lung 49% (CI 42%-56%); ovarian 72% (CI 60-82%); pancreatic 56% (CI 46%-66%). Conclusions: This study demonstrates that 5hmC profiles can distinguish cancer and normal tissues based on their origin. Further, 5hmC changes in cfDNA enables detection of the several cancer types: breast, colorectal, lung, ovarian and pancreatic cancers. Our technology provides a non-invasive tool for cancer detection with low risk sample collection enabling improved compliance than current screening methods. Among other utilities, we believe our technology could be applied to asymptomatic high-risk individuals thus enabling enrichment for those subjects that most need a diagnostic imaging follow up.


Author(s):  
Abdulkadir Özdemir ◽  
Uğur Yavuz ◽  
Fares Abdulhafidh Dael

<span>Nowadays data mining become one of the technologies that paly major effect on business intelligence. However, to be able to use the data mining outcome the user should go through many process such as classified data. Classification of data is processing data and organize them in specific categorize to be use in most effective and efficient use. In data mining one technique is not applicable to be applied to all the datasets. This paper showing the difference result of applying different techniques on the same data. This paper evaluates the performance of different classification techniques using different datasets. In this study four data classification techniques have chosen. They are as follow, BayesNet, NaiveBayes, Multilayer perceptron and J48. The selected data classification techniques performance tested under two parameters, the time taken to build the model of the dataset and the percentage of accuracy to classify the dataset in the correct classification. The experiments are carried out using Weka 3.8 software. The results in the paper demonstrate that the efficiency of Multilayer Perceptron classifier in overall the best accuracy performance to classify the instances, and NaiveBayes classifiers were the worst outcome of accuracy to classifying the instance for each dataset.</span>


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Marium Mehmood ◽  
Nasser Alshammari ◽  
Saad Awadh Alanazi ◽  
Fahad Ahmad

The liver is the human body’s mandatory organ, but detecting liver disease at an early stage is very difficult due to the hiddenness of symptoms. Liver diseases may cause loss of energy or weakness when some irregularities in the working of the liver get visible. Cancer is one of the most common diseases of the liver and also the most fatal of all. Uncontrolled growth of harmful cells is developed inside the liver. If diagnosed late, it may cause death. Treatment of liver diseases at an early stage is, therefore, an important issue as is designing a model to diagnose early disease. Firstly, an appropriate feature should be identified which plays a more significant part in the detection of liver cancer at an early stage. Therefore, it is essential to extract some essential features from thousands of unwanted features. So, these features will be mined using data mining and soft computing techniques. These techniques give optimized results that will be helpful in disease diagnosis at an early stage. In these techniques, we use feature selection methods to reduce the dataset’s feature, which include Filter, Wrapper, and Embedded methods. Different Regression algorithms are then applied to these methods individually to evaluate the result. Regression algorithms include Linear Regression, Ridge Regression, LASSO Regression, Support Vector Regression, Decision Tree Regression, Multilayer Perceptron Regression, and Random Forest Regression. Based on the accuracy and error rates generated by these Regression algorithms, we have evaluated our results. The result shows that Random Forest Regression with the Wrapper Method from all the deployed Regression techniques is the best and gives the highest R2-Score of 0.8923 and lowest MSE of 0.0618.


Lubricant condition monitoring (LCM), part of condition monitoring techniques under Condition Based Maintenance, monitors the condition and state of the lubricant which reveal the condition and state of the equipment. LCM has proved and evidenced to represent a key concept driving maintenance decision making involving sizeable number of parameter (variables) tests requiring classification and interpretation based on the lubricant’s condition. Reduction of the variables to a manageable and admissible level and utilization for prediction is key to ensuring optimization of equipment performance and lubricant condition. This study advances a methodology on feature selection and predictive modelling of in-service oil analysis data to assist in maintenance decision making of critical equipment. Proposed methodology includes data pre-processing involving cleaning, expert assessment and standardization due to the different measurement scales. Limits provided by the Original Equipment Manufacturers (OEM) are used by the analysts to manually classify and indicate samples with significant lubricant deterioration. In the last part of the methodology, Random Forest (RF) is used as a feature selection tool and a Decision Tree-based (DT) classification of the in-service oil samples. A case study of a thermal power plant is advanced, to which the framework is applied. The selection of admissible variables using Random Forest exposes critical used oil analysis (UOA) variables indicative of lubricant/machine degradation, while DT model, besides predicting the classification of samples, offers visual interpretability of parametric impact to the classification outcome. The model evaluation returned acceptable predictive, while the framework renders speedy classification with insights for maintenance decision making, thus ensuring timely interventions. Moreover, the framework highlights critical and relevant oil analysis parameters that are indicative of lubricant degradation; hence, by addressing such critical parameters, organizations can better enhance the reliability of their critical operable equipment.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yanjuan Li ◽  
Zitong Zhang ◽  
Zhixia Teng ◽  
Xiaoyan Liu

Amyloid is generally an aggregate of insoluble fibrin; its abnormal deposition is the pathogenic mechanism of various diseases, such as Alzheimer’s disease and type II diabetes. Therefore, accurately identifying amyloid is necessary to understand its role in pathology. We proposed a machine learning-based prediction model called PredAmyl-MLP, which consists of the following three steps: feature extraction, feature selection, and classification. In the step of feature extraction, seven feature extraction algorithms and different combinations of them are investigated, and the combination of SVMProt-188D and tripeptide composition (TPC) is selected according to the experimental results. In the step of feature selection, maximum relevant maximum distance (MRMD) and binomial distribution (BD) are, respectively, used to remove the redundant or noise features, and the appropriate features are selected according to the experimental results. In the step of classification, we employed multilayer perceptron (MLP) to train the prediction model. The 10-fold cross-validation results show that the overall accuracy of PredAmyl-MLP reached 91.59%, and the performance was better than the existing methods.


Author(s):  
Fabian Torres ◽  
Boris Escalante-Ramirez ◽  
Jorge Perez-Gonzales ◽  
Roman Anselmo Mora-Gutierrrez ◽  
Antonin Ponsich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document