FIB-SEM and TEM Investigations of an Organic-rich Shale Maturation Series from the Lower Toarcian Posidonia Shale, GermanyNanoscale Pore System and Fluid-rock Interactions

Author(s):  
Sylvain Bernard ◽  
Leon Brown ◽  
Richard Wirth ◽  
Anja Schreiber ◽  
Hans-Martin Schulz ◽  
...  
Author(s):  
Daryl A. Cornish ◽  
George L. Smit

Oreochromis mossambicus is currently receiving much attention as a candidater species for aquaculture programs within Southern Africa. This has stimulated interest in its breeding cycle as well as the morphological characteristics of the gonads. Limited information is available on SEM and TEM observations of the male gonads. It is known that the testis of O. mossambicus is a paired, intra-abdominal structure of the lobular type, although further details of its characteristics are not known. Current investigations have shown that spermatids reach full maturity some two months after the female becomes gravid. Throughout the year, the testes contain spermatids at various stages of development although spermiogenesis appears to be maximal during November when spawning occurs. This paper describes the morphological and ultrastructural characteristics of the testes and spermatids.Specimens of this fish were collected at Syferkuil Dam, 8 km north- west of the University of the North over a twelve month period, sacrificed and the testes excised.


Palaeobotany ◽  
2012 ◽  
Vol 3 ◽  
pp. 5-11
Author(s):  
A. V. Gomankov ◽  
V. F. Tarasevich

Dispersed bisaccate pollen grains of Scutasporites nanuki were studied by means of LM, SEM and TEM. Sacci ultrastructure of these pollen grains was rather peculiar. Sacci were like a thin fi lmy fringe attached to the central body near the equator. They were fi lled with sporopollenin elements of irregular shape and various dimensions with equally various cavities between them. Such an ultrastructure is called as spongy. The morphology and ultrastructure of S. nanuki is discussed in the context of the evolution of early conifers.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1722-1723
Author(s):  
Guillermina González-Mancera ◽  
Laura E. Gómez-Lizarraga ◽  
Joaquin Morales-García

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Britta Kuehlmann ◽  
Isabel Zucal ◽  
Clark Andrew Bonham ◽  
Lydia-Marie Joubert ◽  
Lukas Prantl

Abstract Background Capsular fibrosis (CF) is the most common long-term complication in implant-based breast augmentation. It is well accepted that the foreign body response (FBR) instigates the development of fibrotic disease. Our study aims to compare murine and human samples of CF and describe the cellular and extracellular matrix (ECM) composition using scanning and transmission electron microscopy (SEM and TEM). Results Miniature microtextured silicone breast implants were implanted in mice and subsequently harvested at days 15, 30, and 90 post-operation. Isolated human capsules with the most aggravated form of CF (Baker IV) were harvested post-operation. Both were analyzed with SEM and TEM to assess cellular infiltration and ECM structure. An architectural shift of collagen fiber arrangement from unidirectional to multidirectional was observed at day 90 when compared to days 15 and 30. Fibrosis was observed with an increase of histiocytic infiltration. Moreover, bacterial accumulation was seen around silicone fragments. These findings were common in both murine and human capsules. Conclusions This murine model accurately recapitulates CF found in humans and can be utilized for future research on cellular invasion in capsular fibrosis. This descriptive study helps to gain a better understanding of cellular mechanisms involved in the FBR. Increases of ECM and cellularity were observed over time with SEM and TEM analysis.


2021 ◽  
Vol 202 ◽  
pp. 108595
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Abdulrauf Adebayo
Keyword(s):  

Fractals ◽  
2019 ◽  
Vol 27 (08) ◽  
pp. 1950142
Author(s):  
JINZE XU ◽  
KELIU WU ◽  
RAN LI ◽  
ZANDONG LI ◽  
JING LI ◽  
...  

Effect of nanoscale pore size distribution (PSD) on shale gas production is one of the challenges to be addressed by the industry. An improved approach to study multi-scale real gas transport in fractal shale rocks is proposed to bridge nanoscale PSD and gas filed production. This approach is well validated with field tests. Results indicate the gas production is underestimated without considering a nanoscale PSD. A PSD with a larger fractal dimension in pore size and variance yields a higher fraction of large pores; this leads to a better gas transport capacity; this is owing to a higher free gas transport ratio. A PSD with a smaller fractal dimension yields a lower cumulative gas production; this is because a smaller fractal dimension results in the reduction of gas transport efficiency. With an increase in the fractal dimension in pore size and variance, an apparent permeability-shifting effect is less obvious, and the sensitivity of this effect to a nanoscale PSD is also impaired. Higher fractal dimensions and variances result in higher cumulative gas production and a lower sensitivity of gas production to a nanoscale PSD, which is due to a better gas transport efficiency. The shale apparent permeability-shifting effect to nanoscale is more sensitive to a nanoscale PSD under a higher initial reservoir pressure, which makes gas production more sensitive to a nanoscale PSD. The findings of this study can help to better understand the influence of a nanoscale PSD on gas flow capacity and gas production.


2014 ◽  
Vol 906 ◽  
pp. 66-71
Author(s):  
Zhen Quan Li ◽  
Qiang Zhen ◽  
Ya Li Wang

High purity ZrSiO4 powder were synthesized using Si (C2H5O)4 and ZrOCl2·8H2O as raw materials by the sol-gel method, LiCl was added as mineralizer to promote crystallization of zircon. The influences of molar ratio of Zr:Si, calcined time and calcined temperature on the synthesis of ZrSiO4 powder were investigated. XRD, SEM and TEM were used to characterize the powders. It was found that when the molar ratio of Zr:Si was 1:1.2, the calcined temperature was 1600°C and the calcined time was 4h, the high purity ZrSiO4 ultrafine powder was obtained. The ZrSiO4 formation began at 1300°C and when the gel was calcined at 1600°Cfor 4 h, the formation rate of ZrSiO4 was up to 95%. SEM and TEM studies reveal a homogeneous product with particle sizes on the order of 0.1-1μm. The IR emissivity of ultrafine ZrSiO4 is 0.892 at the whole wavelength range, and that is up to 0.951 at the wavelength range of 8-14 μm.


2016 ◽  
Vol 224 ◽  
pp. 176-189 ◽  
Author(s):  
B. Dragoi ◽  
A. Ungureanu ◽  
C. Ciotonea ◽  
A. Chirieac ◽  
S. Petit ◽  
...  

1999 ◽  
Vol 48 (6) ◽  
pp. 791-794 ◽  
Author(s):  
Y. Yabuuchi ◽  
S. Inazato

Sign in / Sign up

Export Citation Format

Share Document