scholarly journals The evolution of acute burn care – retiring the split skin graft

2017 ◽  
Vol 99 (6) ◽  
pp. 432-438 ◽  
Author(s):  
JE Greenwood

The skin graft was born in 1869 and since then, surgeons have been using split skin grafts for wound repair. Nevertheless, this asset fails the big burn patient, who deserves an elastic, mobile and robust outcome but who receives the poorest possible outcome based on donor site paucity. Negating the need for the skin graft requires an autologous composite cultured skin and a material capable of temporising the burn wound for four weeks until the composite is produced. A novel, biodegradable polyurethane chemistry has been used to create two such products. This paper describes the design, production, optimisation and evaluation of several iterations of these products. The evaluation has occurred in a variety of models, both in vitro and in vivo, employing Hunterian scientific principles, and embracing Hunter’s love and appreciation of comparative anatomy. The process has culminated in significant human experience in complex wounds and extensive burn injury. Used serially, the products offer robust and elastic healing in deep burns of any size within 6 weeks of injury.

2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S191-S192
Author(s):  
Angela R Jockheck-Clark ◽  
Randolph Stone ◽  
Michelle Holik ◽  
Lucy Schaffer ◽  
Shanmugasundaram Natesan ◽  
...  

Abstract Introduction Thermal burns account for 5–10% of casualties sustained in present-day conflicts and are expected to be one of the most common wounds to occur in future conflicts. In prolonged field care (PFC) situations, medical evacuation could be delayed for days. During this time, burn wounds can become infected, detrimentally impact neighboring tissue, and cause systemic immune responses. Therefore, it is essential to test and evaluate non-surgical debridement agents that could be implemented prior to reaching a Role 3 military treatment facility. This work details how the proprietary proteolytic gel SN514 impacts burn debridement when applied within a PFC-like timeline. SN514 contains an enzyme formulation that is thermostable, easy to apply, and selectively degrades non-viable tissue in vitro and in vivo. Methods Deep-partial thickness contact burns were created using an established porcine model and covered with gauze or an antimicrobial incise drape. Four days later, the burns were treated with one of five treatments: 0.2% SN514, 0.8% SN514, a vehicle control, gauze, or an antimicrobial silver dressing. Treatments were re-applied every 24 hours for 72 to 96 hours. The effects of the treatment regiments were compared histologically. Biopsies were also taken to monitor bacterial contamination levels. Results Burns treated with SN514 were partially debrided and visually distinct from those treated with gauze, the silver dressing, or the vehicle control. Preliminary analyses suggest that SN514-treated burns that had been covered with “dry” gauze had a much lower debridement efficiency than those treated with the incise drape. This suggests that SN514 debridement efficiency may depend on the presence of a moist eschar. Preliminary analyses also suggest that there was little difference in burn wound bacterial counts among the five treatment groups. Conclusions SN514 is able to debride burns that experienced delayed treatment, without any evidence of harm to the surrounding tissue or evidence of exacerbating the original burn injury. SN514-treated wounds displayed little to no blood loss and did not increase burn wound infection levels compared to wounds treated with gauze or an antimicrobial silver dressing.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Le Hang Dang ◽  
Thi Hiep Nguyen ◽  
Ha Le Bao Tran ◽  
Vu Nguyen Doan ◽  
Ngoc Quyen Tran

Burn wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent; therefore, it can prevent the prolonged presence of oxygen free radicals which is a significant factor causing inhabitation of optimum healing process. This study describes an extension of study about the biofunctional nanocomposite hydrogel platform that was prepared by using curcumin and an amphiphilic chitosan-g-pluronic copolymer specialized in burn wound healing application. This formular (nCur-CP, nanocomposite hydrogel) was a free-flowing sol at ambient temperature and instantly converted into a nonflowing gel at body temperature. In addition, the storage study determined the great stability level of nCur-CP in long time using UV-Vis and DLS. Morphology and distribution of nCur in its nanocomposite hydrogels were observed by SEM and TEM, respectively. In vitro studies suggested that nCur-CP exhibited well fibroblast proliferation and ability in antimicrobacteria. Furthermore, second- and third-degree burn wound models were employed to evaluate the in vivo wound healing activity of the nCur-CP. In the second-degree wound model, the nanocomposite hydrogel group showed a higher regenerated collagen density and thicker epidermis layer formation. In third degree, the nCur-CP group also exhibited enhancement of wound closure. Besides, in both models, the nanocomposite material-treated groups showed higher collagen content, better granulation, and higher wound maturity. Histopathologic examination also implied that the nanocomposite hydrogel based on nanocurcumin and chitosan could enhance burn wound repair. In conclusion, the biocompatible and injectable nanocomposite scaffold might have great potential to apply for wound healing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yosuke Niimi ◽  
Dannelys Pérez-Bello ◽  
Koji Ihara ◽  
Satoshi Fukuda ◽  
Sam Jacob ◽  
...  

AbstractThis study investigated the efficacy of Omega-7 isolated from the sea buckthorn oil (Polyvit Co., Ltd, Gangar Holding, Ulaanbaatar, Mongolia) in ovine burn wound healing models. In vitro, proliferation (colony-forming rate) and migration (scratch) assays using cultured primary ovine keratinocytes were performed with or without 0.025% and 0.08% Omega-7, respectively. The colony-forming rate of keratinocytes in the Omega-7 group at 72 and 96 h were significantly higher than in the control (P < 0.05). The percentage of closure in scratch assay in the Omega-7 group was significantly higher than in the control at 17 h (P < 0.05). In vivo, efficacy of 4% Omega-7 isolated from buckthorn oil was assessed at 7 and 14 days in grafted ovine burn and donor site wounds. Telomerase activity, keratinocyte growth factor, and wound nitrotyrosine levels were measured at day 14. Grafted sites: Un-epithelialized raw surface area was significantly lower and blood flow was significantly higher in the Omega-7-treated sites than in control sites at 7 and 14 days (P < 0.05). Telomerase activity and levels of keratinocyte growth factors were significantly higher in the Omega-7-treated sites after 14 days compared to those of control (P < 0.05). The wound 3-nitrotyrosine levels were significantly reduced by Omega-7. Donor sites: the complete epithelialization time was significantly shorter and blood flow at day 7 was significantly higher in the Omega-7-treated sites compared to control sites (P < 0.05). In summary, topical application of Omega-7 accelerates healing of both grafted burn and donor site wounds. Omega-7 should be considered as a cost-efficient and effective supplement therapy for burn wound healing.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Nitin K. Upadhyay ◽  
Ratan Kumar ◽  
M. S. Siddiqui ◽  
Asheesh Gupta

The present investigation was undertaken to evaluate the healing efficacy of lyophilized aqueous leaf extract of Sea buckthorn (Hippophae rhamnoidesL., family Elaeagnaceae) (SBT) and to explore its possible mechanism of action on experimental burn wounds in rats. The SBT extract, at various concentrations, was applied topically, twice daily for 7 days. Treatment with silver sulfadiazine (SSD) ointment was used as reference control. The most effective concentration of the extract was found to be 5.0% (w/w) for burn wound healing and this was further used for detailed study. The SBT-treated group showed faster reduction in wound area in comparison with control and SSD-treated groups. The topical application of SBT increased collagen synthesis and stabilization at the wound site, as evidenced by increase in hydroxyproline, hexosamine levels and up-regulated expression of collagen type-III. The histological examinations and matrix metalloproteinases (MMP-2 and -9) expression also confirmed the healing efficacy of SBT leaf extract. Furthermore, there was significant increase in levels of endogenous enzymatic and non-enzymatic antioxidants and decrease in lipid peroxide levels in SBT-treated burn wound granulation tissue. The SBT also promoted angiogenesis as evidenced by anin vitrochick chorioallantoic membrane model andin vivoup-regulated vascular endothelial growth factor (VEGF) expression. The SBT leaf extract had no cytotoxic effect on BHK-21 cell line. In conclusion, SBT aqueous leaf extract possesses significant healing potential in burn wounds and has a positive influence on the different phases of wound repair.


Author(s):  
Santram Lodhi ◽  
Gautam P Vadnere

The wound healing process consists of four highly integrated and overlapping phases: Hemostasis, inflammation, proliferation, and tissue remodeling. These phases and their biophysiological functions must occur in the proper sequence, at a specific time and continue for a specific duration at an optimal intensity. There are many factors that can affect wound healing which interferes with one or more phases in this process, thus causing improper or impaired tissue repair. This review was aimed to collect data and made a critical analysis. This will provide concise information regarding different models and parameters used for wound healing study. The data related to different wound models are collected using popular search engines as well as relevant science search engines and database including Google Scholar, Science Direct, and PubMed. A new drug substance can be evaluated for wound healing activity using different in vitro models such as cell culture, chick chorioallantoic membrane model, tube formation on metrigel and capillary growth model. The in vivo wound models such as incision, excision, dead space, burn wound, ischemic wound, and diabetic wound models are frequently used. Each model has specific importance. The limitations and advantages of each are described in this review. Although animal wound repair is an imperfect reflection of human wound healing and its clinical challenges, these models can be fundamental tools for the development of new approaches to rational wound therapy. 


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Fang Wu ◽  
Difei Bian ◽  
Yufeng Xia ◽  
Zhunan Gong ◽  
Qian Tan ◽  
...  

Centella asiaticaherbs have been prescribed as a traditional medicine for wound healing in China and Southeast Asia for a long time. They contain many kinds of triterpenoid compounds, mainly including glycosides (asiaticoside and madecassoside) and corresponding aglycones (asiatic acid and madecassic acid). To identify which is the major active constituent, a comprehensive and comparative study of these compounds was performed.In vitro, primary human skin fibroblasts, originating from healthy human foreskin samples, were treated with various concentrations of asiaticoside, madecassoside, asiatic acid, and madecassic acid, respectively. Cell proliferation, collagen synthesis, MMP-1/TIMP-1 balance, and TGF-β/Smad signaling pathway were investigated.In vivo, mice were orally administered with the four compounds mentioned above for two weeks after burn injury. The speed and quality of wound healing, as well as TGF-β1levels in skin tissues, were examined. Interestingly, in contrast to prevalent postulations, asiaticoside and madecassoside themselves, rather than their corresponding metabolites asiatic acid and madecassic acid, are recognized as the main active constituents ofC. asiaticaherbs responsible for burn wound healing. Furthermore, madecassoside is more effective than asiaticoside (P=0.0446for procollagen type III synthesisin vitro,P=0.0057for wound healing speed, andP=0.0491for wound healing patternin vivo, correspondingly).


RSC Advances ◽  
2018 ◽  
Vol 8 (30) ◽  
pp. 16420-16432 ◽  
Author(s):  
Sirsendu Bhowmick ◽  
A. V. Thanusha ◽  
Arun Kumar ◽  
Dieter Scharnweber ◽  
Sandra Rother ◽  
...  

The paper demonstrates the fabrication of sericin loaded hybrid polymeric composite nanofibrous scaffold and evaluation of its cytocompatibilty in three human monocultures and biocompatibility in second degree burn wound model in Wistar rats.


Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 380
Author(s):  
Deepak K. Ozhathil ◽  
Michael W. Tay ◽  
Steven E. Wolf ◽  
Ludwik K. Branski

Thermal injuries have been a phenomenon intertwined with the human condition since the dawn of our species. Autologous skin translocation, also known as skin grafting, has played an important role in burn wound management and has a rich history of its own. In fact, some of the oldest known medical texts describe ancient methods of skin translocation. In this article, we examine how skin grafting has evolved from its origins of necessity in the ancient world to the well-calibrated tool utilized in modern medicine. The popularity of skin grafting has ebbed and flowed multiple times throughout history, often suppressed for cultural, religious, pseudo-scientific, or anecdotal reasons. It was not until the 1800s, that skin grafting was widely accepted as a safe and effective treatment for wound management, and shortly thereafter for burn injuries. In the nineteenth and twentieth centuries skin grafting advanced considerably, accelerated by exponential medical progress and the occurrence of man-made disasters and global warfare. The introduction of surgical instruments specifically designed for skin grafting gave surgeons more control over the depth and consistency of harvested tissues, vastly improving outcomes. The invention of powered surgical instruments, such as the electric dermatome, reduced technical barriers for many surgeons, allowing the practice of skin grafting to be extended ubiquitously from a small group of technically gifted reconstructive surgeons to nearly all interested sub-specialists. The subsequent development of biologic and synthetic skin substitutes have been spurred onward by the clinical challenges unique to burn care: recurrent graft failure, microbial wound colonization, and limited donor site availability. These improvements have laid the framework for more advanced forms of tissue engineering including micrografts, cultured skin grafts, aerosolized skin cell application, and stem-cell impregnated dermal matrices. In this article, we will explore the convoluted journey that modern skin grafting has taken and potential future directions the procedure may yet go.


2021 ◽  
Vol 11 (11) ◽  
pp. 1808-1818
Author(s):  
Xiuli Li ◽  
Jigang Wang ◽  
Xin Li ◽  
Xiaoqian Hou ◽  
Hao Wang ◽  
...  

In our current study, porous heparin-polyvinylpyrrolidone/TiO2 nanocomposite (HpPVP/TiO2) bandage were prepared via the incorporation of TiO2 into HpPVP hydrogels for biomedical applications such as burn infection. The effect of the HpPVP hydrogels and the nanoparticles of TiO2 composition on the functional group and the surface properties of the as-fabricated bandages were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). The presence of TiO2 nanoparticles created the internal structure of the HpPVP hydrogel that aids in a homogeneous porous structure, as indicated by the scanning electron microscope (SEM). The size distribution of the TiO2 nanoparticles was measured using a transmission electron microscope (TEM). The studies on the mechanical properties of the HpPVP hydrogel indicate that the addition of TiO2 nanoparticles increases its strength. The prepared HpPVP/TiO2 nanocomposite dressing has excellent antimicrobial activity were tested against bacterial species (Staphylococcus aureus and Escherichia coli) and has good biocompatibility against human dermal fibroblast cells (HFFF2) for biological applications. In addition, in vivo evaluations in Kunming mice exposed that the as-fabricated HpPVP/TiO2 nanocomposite bandages increased the wound curing and facilitated accelerate skin cell construction along with collagen development. The synergistic effects of the HpPVP/TiO2 nanocomposite hydrogel dressing material, such as its excellent hydrophilic nature, good bactericidal activity, biocompatibility and wound closure rate through in vivo test makes it a suitable candidate for burn infections.


2007 ◽  
Vol 292 (2) ◽  
pp. L529-L536 ◽  
Author(s):  
Amiq Gazdhar ◽  
Patrick Fachinger ◽  
Coretta van Leer ◽  
Jaroslaw Pierog ◽  
Mathias Gugger ◽  
...  

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-β1 (TGF-β1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-β1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.


Sign in / Sign up

Export Citation Format

Share Document