scholarly journals Litter Surface Temperature: A Driving Factor Affecting Foraging Activity in Dinoponera lucida (Hymenoptera: Formicidae)

Sociobiology ◽  
2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Flávio Curbani ◽  
Cássio Zocca ◽  
Rodrigo B. Ferreira ◽  
Cecilia Waichert ◽  
Tathiana Guerra Sobrinho ◽  
...  

Dinoponera lucida is a poneromorph ant endemic to the Atlantic Forest of Brazil. The species is classified as endangered in Brazil’s Red List due to its peculiar reproductive biology and high habitat fragmentation. Herein, we characterize D. lucida foraging activity and response to litter surface temperature in a lowland forest remnant in south-eastern Brazil. The mean flow of workers at nest openings was 3.8 ± 0.6 per hour, mean foraging trip was 14.2 ± 2.2 min, and mean foraging distance was 3.8 ± 0.4 m. The time spent per foraging trip and litter surface temperature were positively correlated. Flow of workers at nest openings was higher with mean temperature of litter surface between 21.0 and 27.0 °C. Our results show that D. lucida has a diurnal foraging activity related to habitat temperature. Our data contribute to the knowledge about the ecology of D. lucida and support the hypothesis of optimal food foraging regulated by habitat temperature. In addition, the better understanding of D. lucida activity patterns can assist on conservation planning of this endangered and endemic ant.

2008 ◽  
Vol 38 (8) ◽  
pp. 1820-1830 ◽  
Author(s):  
Laure Zanna ◽  
Eli Tziperman

Abstract The amplification of thermohaline circulation (THC) anomalies resulting from heat and freshwater forcing at the ocean surface is investigated in a zonally averaged coupled ocean–atmosphere model. Optimal initial conditions of surface temperature and salinity leading to the largest THC growth are computed, and so are the structures of stochastic surface temperature and salinity forcing that excite maximum THC variance (stochastic optimals). When the THC amplitude is defined as its sum of squares (equivalent to using the standard L2 norm), the nonnormal linearized dynamics lead to an amplification with a time scale on the order of 100 yr. The optimal initial conditions have a vanishing THC anomaly, and the complex amplification mechanism involves the advection of both temperature and salinity anomalies by the mean flow and of the mean temperature and salinity by the anomaly flow. The L2 characterization of THC anomalies leads to physically interesting results, yet to a mathematically singular problem. A novel alternative characterizing the THC amplitude by its maximum value, as often done in general circulation model studies, is therefore introduced. This complementary method is shown to be equivalent to using the L-infinity norm, and the needed mathematical approach is developed and applied to the THC problem. Under this norm, an amplification occurs within 10 yr explained by the classic salinity advective feedback mechanism. The analysis of the stochastic optimals shows that the character of the THC variability may be very sensitive to the spatial pattern of the surface forcing. In particular, a maximum THC variance and long-time-scale variability are excited by a basin-scale surface forcing pattern, while a significantly higher frequency and to some extent a weaker variability are induced by a smooth and large-scale, yet mostly concentrated in polar areas, surface forcing pattern. Overall, the results suggest that a large THC variability can be efficiently excited by atmospheric surface forcing, and the simple model used here makes several predictions that would be interesting to test using more complex models.


2008 ◽  
Vol 65 (1) ◽  
pp. 43-65 ◽  
Author(s):  
Pablo Zurita-Gotor

Abstract This paper discusses the sensitivity of the isentropic slope in a primitive equation dry model forced with Newtonian cooling when the heating is varied. This is done in two different ways, changing either the radiative equilibrium baroclinicity or the diabatic time scale for the zonal-mean flow. When the radiative equilibrium baroclinicity is changed, the isentropic slope remains insensitive against changes in the forcing, in agreement with previous results. However, the isentropic slope steepens when the diabatic heating rate is accelerated for the zonal-mean flow. Changes in the ratio between the interior and the boundary diffusivities as the diabatic heating rate is varied appear to be responsible for the violation of the constant criticality constraint in this model. Theoretical arguments are used to relate the sensitivity of the isentropic slope to that of the isentropic mass flux, which also remains constant when the radiative-equilibrium baroclinicity is changed. The sensitivity of the isentropic mass flux on the heating depends on how the gross stability changes. Bulk stabilities calculated from isobaric averages and gross stabilities estimated from isentropic diagnostics are not necessarily equivalent because a significant part of the return flow occurs at potential temperatures colder than the mean surface temperature.


1985 ◽  
Vol 50 (11) ◽  
pp. 2396-2410
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

The study describes a method of modelling axial-radial circulation in a tank with an axial impeller and radial baffles. The proposed model is based on the analytical solution of the equation for vortex transport in the mean flow of turbulent liquid. The obtained vortex flow model is tested by the results of experiments carried out in a tank of diameter 1 m and with the bottom in the shape of truncated cone as well as by the data published for the vessel of diameter 0.29 m with flat bottom. Though the model equations are expressed in a simple form, good qualitative and even quantitative agreement of the model with reality is stated. Apart from its simplicity, the model has other advantages: minimum number of experimental data necessary for the completion of boundary conditions and integral nature of these data.


2019 ◽  
Vol 23 (10) ◽  
pp. 4323-4331 ◽  
Author(s):  
Wouter J. M. Knoben ◽  
Jim E. Freer ◽  
Ross A. Woods

Abstract. A traditional metric used in hydrology to summarize model performance is the Nash–Sutcliffe efficiency (NSE). Increasingly an alternative metric, the Kling–Gupta efficiency (KGE), is used instead. When NSE is used, NSE = 0 corresponds to using the mean flow as a benchmark predictor. The same reasoning is applied in various studies that use KGE as a metric: negative KGE values are viewed as bad model performance, and only positive values are seen as good model performance. Here we show that using the mean flow as a predictor does not result in KGE = 0, but instead KGE =1-√2≈-0.41. Thus, KGE values greater than −0.41 indicate that a model improves upon the mean flow benchmark – even if the model's KGE value is negative. NSE and KGE values cannot be directly compared, because their relationship is non-unique and depends in part on the coefficient of variation of the observed time series. Therefore, modellers who use the KGE metric should not let their understanding of NSE values guide them in interpreting KGE values and instead develop new understanding based on the constitutive parts of the KGE metric and the explicit use of benchmark values to compare KGE scores against. More generally, a strong case can be made for moving away from ad hoc use of aggregated efficiency metrics and towards a framework based on purpose-dependent evaluation metrics and benchmarks that allows for more robust model adequacy assessment.


2021 ◽  
Vol 108 ◽  
pp. 106377
Author(s):  
Mohammed Faheem ◽  
Aqib Khan ◽  
Rakesh Kumar ◽  
Sher Afghan Khan ◽  
Waqar Asrar ◽  
...  

Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 162 ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the C a number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model was successfully verified with high-speed camera measurements and published empirical data.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3625
Author(s):  
Jon Hardwick ◽  
Ed B. L. Mackay ◽  
Ian G. C. Ashton ◽  
Helen C. M. Smith ◽  
Philipp R. Thies

Numerical modeling of currents and waves is used throughout the marine energy industry for resource assessment. This study compared the output of numerical flow simulations run both as a standalone model and as a two-way coupled wave–current simulation. A regional coupled flow-wave model was established covering the English Channel using the Delft D-Flow 2D model coupled with a SWAN spectral wave model. Outputs were analyzed at three tidal energy sites: Alderney Race, Big Roussel (Guernsey), and PTEC (Isle of Wight). The difference in the power in the tidal flow between coupled and standalone model runs was strongly correlated to the relative direction of the waves and currents. The net difference between the coupled and standalone runs was less than 2.5%. However, when wave and current directions were aligned, the mean flow power was increased by up to 7%, whereas, when the directions were opposed, the mean flow power was reduced by as much as 9.6%. The D-Flow Flexible Mesh model incorporates the effects of waves into the flow calculations in three areas: Stokes drift, forcing by radiation stress gradients, and enhancement of the bed shear stress. Each of these mechanisms is discussed. Forcing from radiation stress gradients is shown to be the dominant mechanism affecting the flow conditions at the sites considered, primarily caused by dissipation of wave energy due to white-capping. Wave action is an important consideration at tidal energy sites. Although the net impact on the flow power was found to be small for the present sites, the effect is site specific and may be significant at sites with large wave exposure or strong asymmetry in the flow conditions and should thus be considered for detailed resource and engineering assessments.


2021 ◽  
pp. 112067212110237
Author(s):  
Ari Leshno ◽  
Ori Stern ◽  
Yaniv Barkana ◽  
Noa Kapelushnik ◽  
Reut Singer ◽  
...  

Purpose: Accumulating evidence suggests that neuroinflammation and immune response are part of the sequence of pathological events leading to optic nerve damage in glaucoma. Changes in tissue temperature due to inflammation can be measured by thermographic imaging. We investigated the ocular surface temperature (OST) profile of glaucomatous eyes to better understand the pathophysiology of these conditions. Methods: Subjects diagnosed with glaucoma (primary open angle glaucoma [POAG] or pseudo exfoliation glaucoma [PXFG]) treated at the Sam Rothberg Glaucoma Center (11/2019–11/2020.) were recruited. Healthy subjects with no ocular disease served as controls. The Therm-App thermal imaging camera was used for OST acquisition. Room and body temperatures were recorded, and the mean temperatures of the medial cantus, lateral cantus, and cornea were calculated with image processing software. Results: Thermographic images were obtained from 52 subjects (52 eyes: 25 POAG and 27 PXFG) and 66 controls (66 eyes). Eyes with glaucoma had a significantly higher OST compared to controls (mean 0.9 ± 0.3°C, p < 0.005). The difference between the two groups remained significant after adjustment for age, sex, intraocular pressure (IOP) and room and body temperatures. Lens status and topical IOP-lowering medication did not significantly affect OST. A subgroup analysis revealed that the OST was higher among eyes with POAG compared to eyes with PXFG, but not significantly. Conclusions: Differences in the OST between glaucomatous and normal eyes strengthens current thinking that inflammation affects the pathophysiology of glaucoma. Longitudinal studies are warranted to establish the prognostic value of thermographic evaluations in these patients.


Author(s):  
Alexander Vakhrushev ◽  
Abdellah Kharicha ◽  
Ebrahim Karimi-Sibaki ◽  
Menghuai Wu ◽  
Andreas Ludwig ◽  
...  

AbstractA numerical study is presented that deals with the flow in the mold of a continuous slab caster under the influence of a DC magnetic field (electromagnetic brakes (EMBrs)). The arrangement and geometry investigated here is based on a series of previous experimental studies carried out at the mini-LIMMCAST facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The magnetic field models a ruler-type EMBr and is installed in the region of the ports of the submerged entry nozzle (SEN). The current article considers magnet field strengths up to 441 mT, corresponding to a Hartmann number of about 600, and takes the electrical conductivity of the solidified shell into account. The numerical model of the turbulent flow under the applied magnetic field is implemented using the open-source CFD package OpenFOAM®. Our numerical results reveal that a growing magnitude of the applied magnetic field may cause a reversal of the flow direction at the meniscus surface, which is related the formation of a “multiroll” flow pattern in the mold. This phenomenon can be explained as a classical magnetohydrodynamics (MHD) effect: (1) the closure of the induced electric current results not primarily in a braking Lorentz force inside the jet but in an acceleration in regions of previously weak velocities, which initiates the formation of an opposite vortex (OV) close to the mean jet; (2) this vortex develops in size at the expense of the main vortex until it reaches the meniscus surface, where it becomes clearly visible. We also show that an acceleration of the meniscus flow must be expected when the applied magnetic field is smaller than a critical value. This acceleration is due to the transfer of kinetic energy from smaller turbulent structures into the mean flow. A further increase in the EMBr intensity leads to the expected damping of the mean flow and, consequently, to a reduction in the size of the upper roll. These investigations show that the Lorentz force cannot be reduced to a simple damping effect; depending on the field strength, its action is found to be topologically complex.


Sign in / Sign up

Export Citation Format

Share Document