scholarly journals Calculation of strength, rigidity, and stability of the aircraft fuselage frame made of composite materials

2021 ◽  
Vol 13 (S) ◽  
pp. 77-86
Author(s):  
Sergei I. IVANNIKOV ◽  
Yana A. VAHTEROVA ◽  
Yuri A. UTKIN ◽  
Ying SUN

Carbon-carbon composite materials (CCCM) are characterized by high heat resistance and thermostability for which they, in most of their physical and mechanical characteristics, can be attributed to the most promising materials. Approximately 81% of all carbon-carbon composite materials are used for the manufacture of brake rotors for aircraft, 18% – in space rocket technology, and only 1% – for all other areas of application. This study discusses calculations of the strength, rigidity, and stability of a frame made of carbon-carbon composite materials. It is known that the strength of CCCM based on high-strength carbon fibers is higher than the strength of a composite material based on high-modulus carbon fibers obtained at various processing temperatures. The stress-strain behaviour (SSB) of the material is carried out. Among the special properties of CCCM are low porosity, low coefficient of thermal expansion, maintaining a stable structure and properties, as well as product dimensions.

2018 ◽  
Vol 26 (4) ◽  
pp. 59-63
Author(s):  
Т. А. Манько ◽  
И. А. Гусарова ◽  
О. П. Роменская ◽  
А. А. Самусенко ◽  
И. И. Деревянко

At present, carbon composite materials are widely used in space technology. The tendency to expand the consumption of carbon fiber in the manufacture of parts and structures requires the study of new ways of obtaining it. A method of modifying carbon fibers by atmospheric plasma treatment in two different media was used: acrylic acid and allylamine, and fillers were studied on tubular models. As a result of the tests, it was found that atmospheric plasma treatment in acrylic acid environment, contributes to the improvement of the characteristics of CFRP by ~ 25 % more efficiently than processing in allylamine for the types of fillers studied.


2015 ◽  
Vol 1101 ◽  
pp. 79-82
Author(s):  
B.C. Suresh ◽  
S.B. Arun

Now a day’s composite materials are taking very important role in industrial growth. Composite materials are widely used in Automobiles, aerospace, submarine and also in other major fields, due to their special characteristics like light weight, high strength, stiffness, corrosion resistance. The determination of Coefficient of Thermal Expansion (CTE) of MMCs is important to aid its usage in high temperature environment as in the case of automobile combustion chamber. In these applications the stability of the composites over a long period of operation is a critical design considerationPresent work deals with the thermal property evaluation of the Al alloy / alumina metal matrix composite developed using the Stir Casting with chilling route technique. LM 26 Al alloy is being selected as the matrix material as it is a potential alloy for automotive piston applications. Al alloy / alumina MMCs was cast under end chilling technique by dispersing the reinforcement from 6 to 12 wt% the steps of 3% to study the variation in its thermal properties. At the same time chill material is also changed (Copper and MS) for different composition of MMCs cast to study the thermal behavior variations. After casting the required MMC, test specimens were prepared as per the standards to conduct thermal conductivity (K) tests and coefficient of thermal expansion (CTE) tests. Above tests were repeated for different composites containing different weight % of dispersed cast using different chills.


Author(s):  
V. V. Kulakov ◽  
M. I. Pankov ◽  
V. A. Sivurova ◽  
M. S. Luchkin ◽  
A. K. Golubkov ◽  
...  

The efficiency of the pyrolytic carbon compaction process by decomposing methane in samples of a carbon-carbon composite randomly reinforced with discrete high-modulus (graphitized) carbon fibers with different densities is investigated. The analysis of the test results of samples for determining the compressive strength, determining the densities of samples after compaction with pyrocarbon and after compaction by impregnation and carbonization under pressure is carried out. Scanning electron microscopy (SEM) was used to study the structure of material samples with different initial density values.


2006 ◽  
Vol 2006 (0) ◽  
pp. 11-12
Author(s):  
Ken TOGAWA ◽  
Akira KURUMADA ◽  
Yoshinobu MOTOHASHI ◽  
Hideo WATANABE ◽  
Naoaki YOSHIDA

MICC 90 ◽  
1991 ◽  
pp. 650-659
Author(s):  
V. Zh. Shemet ◽  
A. P. Pomytkin ◽  
T. G. Protsenko ◽  
P. I. Zoikin ◽  
V. A. Lavrenko

Sign in / Sign up

Export Citation Format

Share Document