scholarly journals The Heat Exchanger Performance of Shell and Multi Tube Helical Coil as a Heater through the Utilization of a Diesel Machine’s Exhaust Gas

Author(s):  
. Zainuddin ◽  
Jufrizal Nurdin ◽  
Eswanto Is

A review on reutilization of heat waste from a diesel machine is absolutely important. This is because the exhaust gas potential of a Diesel machine keeps increasing and not much has been utilized by the industry. One of the techniques of reutilizing the heat waste in industry is by using a heat exchanger. The technique is also very useful for the environment because it can reduce air pollution caused by the exhaust gas of the diesel machine. The main purpose of the research is to find out the capability of shell and multi-tube helical coil HE as an air heater by utilizing the exhaust gas of the Diesel machine. The heat exchanger of shell and multi-tube helical coil  utilizes the exhaust thermal gas of the Diesel machine as the air heater already made. The apparatus has the following dimension: the shell length of 1.05 m, diameter 0.1524 m, tube length of 3.25 m with 20 coils, tube diameter of 0.011 m, coil diameter of 0.0508 m with 4 helical coils. The type of Diesel machine to use in the testing is 4FB1 Isuzu Diesel engine. The machine has the maximum machine power and rotation of 54 kW and 3,600 rpm. The performance testing of heat exchanger has been conducted in some variations of Diesel machine rotations of 1,500 rpm, 1,750 rpm, 2,000 rpm, 2,250 rpm and 2,500 rpm. The testing result shows a maximum effectiveness to happen at the machine rotation of 1,500 rpm. The maximum effectiveness to get is 67.8% and then it goes down drastically in accordance with the increase of air mass flow rate. The hot air temperature created is from 47.1°C to 52.3°C so that it can be used for the purpose of drying up the unhulled rice.

Author(s):  
E Neshat ◽  
S Hossainpour

The main purpose of this work is a numerical study on unsteady natural convection from outer surface of helical coils. Each heat exchanger consisted of a helical coil and a shell. The helical coil was mounted in the shell vertically. The cold water was in the shell and the hot water was flowing through the coil and was cooled by unsteady natural convection. A CFD code has been used for heat exchanger simulation. The analyses have been carried out for 27 helical coils with different geometries. The effect of helical coil geometry on natural convective heat transfer is investigated. All of continuity, momentum, energy, and turbulence equations are solved for both of fluids simultaneously, so there is no need to simplifying assumptions for boundary conditions. Results are compared with previous experimental researches. Statistical analyses have been done on data points of temperature and natural convection Nusselt number. It is revealed that shell-side fluid temperature and the Nusselt number of the outer surface of coils are functions of in-tube fluid mass flow rate, geometrical parameters of helical coils, and time. A new correlation is presented for calculating the temperature changes of bath fluid. Some other fluids are used as coil and bath fluids and results show that the presented correlation for bath temperature computing have an acceptable accuracy for them.


2009 ◽  
Vol 34 (5) ◽  
pp. 363-370 ◽  
Author(s):  
Geum-Choon Kang ◽  
Yoen-Ku Kang ◽  
Young-Sun Ryou ◽  
Young-Joong Kim ◽  
Si-Young Lee ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 29-35
Author(s):  
Nafisa Saidho’jaeva ◽  

The article deals with the calculation of the drive and chain transmission of the newly created mechanized drying plant for drying melon slices. The essence of the utility model: the machine contains a horizontal tunnel chamber, inside which is mounted a chain conveyor with driving and driven sprockets, load-carrying elements, the IR emitters with reflectors on top of the camera mounted electric air heater, fan, an annular heat exchanger equipped with inlet and outlet nozzles of the drying agent. On the branches of the conveyor chain, lodgments with folding clamps are mounted, on which load-bearing elements are fixed, which are used as wooden poles. The calculation of the drive and chain transmission of the drying plant conveyor was carried out according to the existing method according to the scheme shown in the figure. Thus, the main parameters of the drive and chain transmission parts of the mechanized chamber-chain drying plant for drying melon fruits were determined by calculation


2016 ◽  
Vol 37 (4) ◽  
pp. 137-159 ◽  
Author(s):  
Rafał Andrzejczyk ◽  
Tomasz Muszyński

Abstract The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.


Author(s):  
Masahiro Osakabe

The most part of energy losses in power system such as fuel cells is due to the heat released by the exhaust gas to atmosphere. The exhaust gas consists of non-condensable gas and steam with sensible and latent heat. As a lot of latent heat is included in the exhaust gas, its recovery is very important to improve the power system efficiency. Based on the previous basic studies, a thermal hydraulic prediction method for latent heat recovery exchangers was proposed. For the condensation of steam on heat transfer tubes, the modified Sherwood number taking account of the mass absorption effect on the wall was used. Two kinds of compact heat exchanger with staggered banks of bare tubes of 10.5 or 4mm in outer diameter was designed with the prediction method. The more compactness was obtained with the smaller tubes at a designed heat recovery. The thermal hydraulic behavior in the compact heat exchangers was experimentally studied with air-steam mixture gas. In the parametric experiments varying the steam mass concentration, the temperature distributions of cooling water and mixture gas were measured. The experimental results agreed well with the prediction proposed in this study and the more compactness with the smaller tubes was proved.


2014 ◽  
Vol 61 ◽  
pp. 2141-2144 ◽  
Author(s):  
Ye Yuan ◽  
Yiji Lu ◽  
Huashan Bao ◽  
Yaodong Wang ◽  
Wen Wang ◽  
...  

2013 ◽  
Author(s):  
Peter Ďurčanský ◽  
Richard Lenhard ◽  
Jozef Jandačka

2018 ◽  
Vol 7 (2.12) ◽  
pp. 136
Author(s):  
Chan JungKim ◽  
Sank Wook-Han ◽  
Ki Hyun Kim ◽  
Moo Yeon Lee ◽  
Gee Soo Lee

Background/Objectives: To meet the regulations for the fuel economy, an EHRS (Exhaust gas Heat Recovery System, which was installed within the vehicle exhaust system and recovered the heat from the exhaust gas, were needed. The EHRS enabled the engine to achieve the fast warm-up performance for reducing friction loss during the cold start.The objective of this paper was to investigate the effects of the design parameters of the EHRS with a plate heat exchanger on the warm-up performance of a gasoline engine.Methods/Statistical analysis: The EHRS with the plate heat exchanger was manufactured and installed behind the catalyst in the exhaust system of the gasoline direct injection engine. The experimental study and multi-disciplinary analysis were carried out to investigate the effects of the EHRS on the warm-up performance of the engine, such as the coolant temperature, the exhaust gas temperature and the recovery heat at idle condition and the step-load condition.Findings: Because the recovery of heat was about 1. 7 kW at idle condition, the effect of the EHRS on the warm-up performance was negligible. However, due to 17.2 kW of the recovery of heat at the stepload condition of T=140 Nm at N=2,400 rpm, the EHRS enabled to shorten the warm-up time by 548 s comparison that of the base engine.Improvements/Applications: The fuel economy will be expected to be improved through an EHRS, which provides the improved combustion in the warm-up phase and a decrease in friction loss.  


Sign in / Sign up

Export Citation Format

Share Document