scholarly journals Removal of Basic Dyes from Aqueous Solutions by Adsorption onto Moroccan Clay (Fez City)

2019 ◽  
Vol 8 (3) ◽  
pp. 158-167 ◽  
Author(s):  
Zaitan Hicham ◽  
Zineb Bencheqroun ◽  
Imane El Mrabet ◽  
Mohammed Kachabi ◽  
Mostafa Nawdali ◽  
...  

The main objective of this study was to investigate the potential of natural clay obtained (from Fez city, Morocco) as an adsorbent for the removal of basic dyes (Astrazon Blue BG and Astrazon Yellow 7GLL) from liquid effluents. Natural clay was characterised using different physical-chemical methods, including nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), pH of the point of zero charge (pHPZC) and Boehm titration method. The clay was tested to remove various textile dyes from the aqueous solution at room temperature. Parameters such as initial dye concentration, solution pH, adsorbent dosages and contact time were performed in a batch system for controlling the operating conditions. Experimental results data indicated that the adsorption process is a fast and spontaneous reaction. A pseudo-second-order kinetic model provides the best fit to the experimental data of BG and YL adsorption onto the natural clay. Theadsorption isotherm data of both the dyes onto the natural clay were fitted well to the Langmuir model. A maximum monolayer adsorption capacity of 101 mg.g-1 for BG and 127 mg.g-1 for YL are obtained at 298.15 K.The results suggest that the natural clay could be used as an inexpensive adsorbent for the removal of the textile dyes from aqueous solutions.

2019 ◽  
Vol 8 (3) ◽  
pp. 158
Author(s):  
Zaitan Hicham ◽  
Zineb Bencheqroun ◽  
Imane El Mrabet ◽  
Mohammed Kachabi ◽  
Mostafa Nawdali ◽  
...  

<p class="Mabstract">The main objective of this study was to investigate the potential of natural clay obtained <span style="text-decoration: line-through;">(</span>from Fez city, Morocco<span style="text-decoration: line-through;">)</span> as an adsorbent for the removal of basic dyes (Astrazon Blue BG and Astrazon Yellow 7GLL) from liquid effluents. Natural clay was characterised using different physical-chemical methods, including nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), pH of the point of zero charge (pH<sub>PZC</sub>) and Boehm titration method. The clay was tested to remove various textile dyes from the aqueous solution at room temperature. Parameters such as initial dye concentration, solution pH, adsorbent dosages and contact time were performed in a batch system for controlling the operating conditions. Experimental results <span style="text-decoration: line-through;">data</span> indicated that the adsorption process is a fast and spontaneous reaction. A pseudo-second-order kinetic model provides the best fit to the experimental data of BG and YL adsorption onto the natural clay. Theadsorption isotherm data of both the dyes onto the natural clay were fitted well to the Langmuir model. A maximum monolayer adsorption capacity of 101 mg.g<sup>-1</sup> for BG and                 127 mg.g<sup>-1</sup> for YL are obtained at 298.15 K.</p><p class="Mabstract">The results suggest that the natural clay could be used as an inexpensive adsorbent for the removal of the textile dyes from aqueous solutions.</p>


Author(s):  
Fernando Murga ◽  
José de Campos ◽  
Roberta Signini

In this study, an aluminosilicate residue from insulators of high voltage transformers was used for the adsorption of basic dyes. The absorbent was characterized by X-ray fluorescence analysis, X-ray diffraction analysis, scanning electron microscopy, multimolecular adsorption theory (Branauer-Emmet-Teller (BET)) and determination of the point of zero charge (pHPZC). The effect of solution pH and adsorbent mass, the kinetic and thermodynamic behavior at different temperatures and the application of non-linear isotherm models of Langmuir, Freundlich, Temkin and Dubinin-Radushevich were investigated. The pHPZC value for the aluminosilicate was 3.7. The best conditions for adsorption of methylene blue and crystal violet dyes were pH 8.0 and adsorbent mass of 1100 mg in 25 mL. The best fit for the experimental data was obtained applying the pseudo-second-order kinetic model, with an equilibrium time of 480 to 720 min, and the activation energy suggests a physical adsorption mechanism. Isothermal parameters suggest a heterogeneous, favorable and predominantly physical surface adsorption. The thermodynamic studies indicated that the adsorption process is not spontaneous and is exothermic and the Gibbs energy values (ΔGº) suggest physisorption.


2021 ◽  
Vol 15 (2) ◽  
pp. 299-311
Author(s):  
Miada Benkartoussa ◽  
◽  
Mossaab Bencheikh Lehocine ◽  
Sihem Arris ◽  
Hassen Abdeslam Meniai ◽  
...  

Adsorption of eriochrome black T (EBT) and rose bengal (RB) mixture from aqueous solutions was investigated using a mixture of low-cost biosorbents – 50 % of raw state potato peels and 50 % of raw state eggshell (M 50%). The surface charge distribution was determined by acid-base titration and the point of zero charge of the M 50% was found to be 8.5. The adsorbent materials were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It was confirmed that M 50% was mainly composed of calcite and cellulose. The effect of various operating parameters such as contact time, pH, temperature, etc., was studied. The amount of the adsorption decreased when solution pH increased. The pseudo-second order kinetic model provided the best fit to the experimental data for the adsorption of EBT and RB. The obtained thermodynamic parameters indicate that the adsorption process is endothermic one. According to the obtained results, the new biosorbent may be recommended as an industrial adsorbent for the treatment of effluents containing EBT and RB.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ &gt; Cd2+ &gt; Zn2+ &gt; Cu2+ &gt; Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ &gt; Cu2+ &gt; Zn2+ &gt; Cd2+ &gt; Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2021 ◽  
Author(s):  
Sobhan Maleky ◽  
Ali Asadipour ◽  
Alireza Nasiri ◽  
Rafael Luque ◽  
Maryam Faraji

Abstract This study aimed to synthesize Fe3O4@Methylcellulose/3-Aminopropyltrimethoxysilane (Fe3O4@MC/APTMS) as a new magnetic nano-biocomposite by a facile, fast, and new microwave-assisted method and to be utilized as an adsorbent for tetracycline (TC) removal from aqueous solutions. Fe3O4@MC/APTMS was characterized by Fourier transform-infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDS), Mapping, X-ray diffraction (XRD), Thermal gravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and vibrating sample magnetometer (VSM). The point of zero charge (pHzpc) value of the nano-biocomposite was estimated to be 6.8 by the solid addition method. Optimum conditions were obtained in TC concentration: 10 mg L−1, adsorbent dosage: 80 mg L−1, contact time: 90 min, and solution pH: 6 with the maximum TC removal of 90% and 65.41% in synthetic and actual samples, respectively. The kinetic and isotherm equations pointed to a pseudo-second order kinetic and Langmuir isotherm optimum fitting models. Based on the values of entropy changes (ΔS) (50.04 J/mol k), the enthalpy changes (ΔH) (9.26 kJ/mol), and the negative Gibbs free energy changes (ΔG), the adsorption process was endothermic, random, and spontaneous. The synthesized adsorbent exhibited outstanding properties, including proper removal efficiency of TC, excellent reusability, and simple separation from aqueous media by a magnet. Consequently, it is highly desirable that Fe3O4@MC/APTMS magnetic nano-biocomposite could be used as a promising adsorbent for TC adsorption from aqueous solutions.


2016 ◽  
Vol 74 (10) ◽  
pp. 2349-2363 ◽  
Author(s):  
Afshin Takdastan ◽  
Amir Hossein Mahvi ◽  
Eder C. Lima ◽  
Mohammad Shirmardi ◽  
Ali Akbar Babaei ◽  
...  

In this study, a new zinc chloride (ZnCl2) impregnated activated carbon (Zn-AC) was prepared from oak charcoals as low-cost material and used as adsorbent for tetracycline (TC) adsorption. The Zn-AC was characterized using field emission-scanning electron microscope, powder X-ray diffraction, and CHNS-O analyses. Specific surface area of the adsorbent was also measured using the Brunauer, Emmett and Teller (BET) isotherm model. The TC adsorption onto the Zn-AC was investigated as a function of solution pH, adsorbent dosage, and inorganic cations (Li+, K+, Mg2+, Ca2+, Ni2+, and Fe3+) and anions (HCO3−, NO3− and SO42−) that could interfere in the adsorption of TC. The adsorbate solution pH had no considerable effect on TC adsorption. The adsorption of TC onto the adsorbent was relatively fast and reached the equilibrium after about 120 min. The results showed that all studied cations and anions decreased TC adsorption onto the Zn-AC, but this decrease in TC adsorption was strongly significant for Fe3+ and Ni2+ ions. The general order kinetic model and the Redlich–Peterson isotherm model provided the best fit to the experimental data. The maximum amount of TC adsorbed onto the Zn-AC (Qmax) is 282.06 mg g−1, indicating this adsorbent is a good adsorbent for the removal of TC from aqueous solutions.


2018 ◽  
Vol 20 (3) ◽  
pp. 95-102 ◽  
Author(s):  
Zhao Zhang ◽  
Yanhui Li ◽  
Qiuju Du ◽  
Qi Li

Abstract Soybean curd is a very popular food containing high-quality protein, polyunsaturated fats, vitamins, minerals and other nutrients. This study aims to prepare porous soybean curd xerogels via a vacuum freeze drying method and uses them as adsorbents to remove congo red from aqueous solutions. The morphology and functional groups of the soybean curd xerogels were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The adsorption properties of congo red onto the soybean curd xerogels were carried out through investigating the infl uencing experimental parameters such as the drying method, solution pH, adsorbent dose, contact time and temperature. The results showed that the adsorption isotherm data were fitted well to the Freundlich isotherm. Adsorption kinetics of congo red onto the soybean curd followed the pseudo-second-order kinetic model. The thermodynamic parameters, such as ΔG0, ΔH0 and ΔS0, were also determined.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed R. Elamin ◽  
Babiker Y. Abdulkhair ◽  
Faisal K. Algethami ◽  
L. Khezami

AbstractNatural clays are considered a safe, low-cost, and sound sorbent for some pharmaceutical and body care products from water. Metformin (MF) and paracetamol (PA) are of the most consumable drugs worldwide. A portion of natural clay was treated with distilled water, and another part was treated with hydrochloric acid. The water-treated clay (WTC) and the acid-treated clay (ATC) were characterized by scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, Fourier transforms infrared spectroscopy, and nitrogen adsorption isotherm. Batch experiments were employed to investigate the influence of contact time and solution parameters on the adsorption of PA and MF on WTC and ATC. 30 min attained the equilibrium for all sorbent-sorbate systems. Both sorbents fitted the pseudo-second-order kinetic model with a preference to the nonlinear fitting, and the mechanism of adsorption partially fitted the liquid-film diffusion model. The PA and MF adsorption on WTC and ATC fitted the Freundlich model in preference to nonlinear fitting. The adsorption of pollutants on both sorbents was spontaneous, exothermic, and physisorption in nature. Even at low concentrations, both WTC and ATC showed efficiency above 80% in removing PA and MF from tab water, groundwater, and Red seawater. These findings nominated natural clay as an alternative to the costly nanomaterials as sorbents for removing pharmaceutical contaminants from water.


2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document