scholarly journals Analysis of SARS-CoV-2 nucleocapsid protein sequence variations in ASEAN countries

Author(s):  
Mochammad Rajasa Mukti Negara ◽  
Ita Krissanti ◽  
Gita Widya Pradini

BACKGROUND Nucleocapsid (N) protein is one of four structural proteins of SARS-CoV-2  which is known to be more conserved than spike protein and is highly immunogenic. This study aimed to analyze the variation of the SARS-CoV-2 N protein sequences in ASEAN countries, including Indonesia. METHODS Complete sequences of SARS-CoV-2 N protein from each ASEAN country were obtained from Global Initiative on Sharing All Influenza Data (GISAID), while the reference sequence was obtained from GenBank. All sequences collected from December 2019 to March 2021 were grouped to the clade according to GISAID, and two representative isolates were chosen from each clade for the analysis. The sequences were aligned by MUSCLE, and phylogenetic trees were built using MEGA-X software based on the nucleotide and translated AA sequences. RESULTS 98 isolates of complete N protein genes from ASEAN countries were analyzed. The nucleotides of all isolates were 97.5% conserved. Of 31 nucleotide changes, 22 led to amino acid (AA) substitutions; thus, the AA sequences were 94.5% conserved. The phylogenetic tree of nucleotide and AA sequences shows similar branches. Nucleotide variations in clade O (C28311T); clade GR (28881–28883 GGG>AAC); and clade GRY (28881–28883 GGG>AAC and C28977T) lead to specific branches corresponding to the clade within both trees. CONCLUSIONS The N protein sequences of SARS-CoV-2 across ASEAN countries are highly conserved. Most isolates were closely related to the reference sequence originating from China, except the isolates representing clade O, GR, and GRY which formed specific branches in the phylogenetic tree.

1980 ◽  
Vol 187 (1) ◽  
pp. 65-74 ◽  
Author(s):  
D Penny ◽  
M D Hendy ◽  
L R Foulds

We have recently reported a method to identify the shortest possible phylogenetic tree for a set of protein sequences [Foulds Hendy & Penny (1979) J. Mol. Evol. 13. 127–150; Foulds, Penny & Hendy (1979) J. Mol. Evol. 13, 151–166]. The present paper discusses issues that arise during the construction of minimal phylogenetic trees from protein-sequence data. The conversion of the data from amino acid sequences into nucleotide sequences is shown to be advantageous. A new variation of a method for constructing a minimal tree is presented. Our previous methods have involved first constructing a tree and then either proving that it is minimal or transforming it into a minimal tree. The approach presented in the present paper progressively builds up a tree, taxon by taxon. We illustrate this approach by using it to construct a minimal tree for ten mammalian haemoglobin alpha-chain sequences. Finally we define a measure of the complexity of the data and illustrate a method to derive a directed phylogenetic tree from the minimal tree.


2004 ◽  
Vol 78 (14) ◽  
pp. 7748-7762 ◽  
Author(s):  
Frederic Bibollet-Ruche ◽  
Elizabeth Bailes ◽  
Feng Gao ◽  
Xavier Pourrut ◽  
Katrina L. Barlow ◽  
...  

ABSTRACT Nearly complete sequences of simian immunodeficiency viruses (SIVs) infecting 18 different nonhuman primate species in sub-Saharan Africa have now been reported; yet, our understanding of the origins, evolutionary history, and geographic distribution of these viruses still remains fragmentary. Here, we report the molecular characterization of a lentivirus (SIVdeb) naturally infecting De Brazza's monkeys (Cercopithecus neglectus). Complete SIVdeb genomes (9,158 and 9,227 bp in length) were amplified from uncultured blood mononuclear cell DNA of two wild-caught De Brazza's monkeys from Cameroon. In addition, partial pol sequences (650 bp) were amplified from four offspring of De Brazza's monkeys originally caught in the wild in Uganda. Full-length (9,068 bp) and partial pol (650 bp) SIVsyk sequences were also amplified from Sykes's monkeys (Cercopithecus albogularis) from Kenya. Analysis of these sequences identified a new SIV clade (SIVdeb), which differed from previously characterized SIVs at 40 to 50% of sites in Pol protein sequences. The viruses most closely related to SIVdeb were SIVsyk and members of the SIVgsn/SIVmus/SIVmon group of viruses infecting greater spot-nosed monkeys (Cercopithecus nictitans), mustached monkeys (Cercopithecus cephus), and mona monkeys (Cercopithecus mona), respectively. In phylogenetic trees of concatenated protein sequences, SIVdeb, SIVsyk, and SIVgsn/SIVmus/SIVmon clustered together, and this relationship was highly significant in all major coding regions. Members of this virus group also shared the same number of cysteine residues in their extracellular envelope glycoprotein and a high-affinity AIP1 binding site (YPD/SL) in their p6 Gag protein, as well as a unique transactivation response element in their viral long terminal repeat; however, SIVdeb and SIVsyk, unlike SIVgsn, SIVmon, and SIVmus, did not encode a vpu gene. These data indicate that De Brazza's monkeys are naturally infected with SIVdeb, that this infection is prevalent in different areas of the species' habitat, and that geographically diverse SIVdeb strains cluster in a single virus group. The consistent clustering of SIVdeb with SIVsyk and the SIVmon/SIVmus/SIVgsn group also suggests that these viruses have evolved from a common ancestor that likely infected a Cercopithecus host in the distant past. The vpu gene appears to have been acquired by a subset of these Cercopithecus viruses after the divergence of SIVdeb and SIVsyk.


2021 ◽  
Vol 82 (1-2) ◽  
Author(s):  
Lena Collienne ◽  
Alex Gavryushkin

AbstractMany popular algorithms for searching the space of leaf-labelled (phylogenetic) trees are based on tree rearrangement operations. Under any such operation, the problem is reduced to searching a graph where vertices are trees and (undirected) edges are given by pairs of trees connected by one rearrangement operation (sometimes called a move). Most popular are the classical nearest neighbour interchange, subtree prune and regraft, and tree bisection and reconnection moves. The problem of computing distances, however, is $${\mathbf {N}}{\mathbf {P}}$$ N P -hard in each of these graphs, making tree inference and comparison algorithms challenging to design in practice. Although anked phylogenetic trees are one of the central objects of interest in applications such as cancer research, immunology, and epidemiology, the computational complexity of the shortest path problem for these trees remained unsolved for decades. In this paper, we settle this problem for the ranked nearest neighbour interchange operation by establishing that the complexity depends on the weight difference between the two types of tree rearrangements (rank moves and edge moves), and varies from quadratic, which is the lowest possible complexity for this problem, to $${\mathbf {N}}{\mathbf {P}}$$ N P -hard, which is the highest. In particular, our result provides the first example of a phylogenetic tree rearrangement operation for which shortest paths, and hence the distance, can be computed efficiently. Specifically, our algorithm scales to trees with tens of thousands of leaves (and likely hundreds of thousands if implemented efficiently).


2007 ◽  
Vol 57 (10) ◽  
pp. 2289-2295 ◽  
Author(s):  
Madalin Enache ◽  
Takashi Itoh ◽  
Tadamasa Fukushima ◽  
Ron Usami ◽  
Lucia Dumitru ◽  
...  

In order to clarify the current phylogeny of the haloarchaea, particularly the closely related genera that have been difficult to sort out using 16S rRNA gene sequences, the DNA-dependent RNA polymerase subunit B′ gene (rpoB′) was used as a complementary molecular marker. Partial sequences of the gene were determined from 16 strains of the family Halobacteriaceae. Comparisons of phylogenetic trees inferred from the gene and protein sequences as well as from corresponding 16S rRNA gene sequences suggested that species of the genera Natrialba, Natronococcus, Halobiforma, Natronobacterium, Natronorubrum, Natrinema/Haloterrigena and Natronolimnobius formed a monophyletic group in all trees. In the RpoB′ protein tree, the alkaliphilic species Natrialba chahannaoensis, Natrialba hulunbeirensis and Natrialba magadii formed a tight group, while the neutrophilic species Natrialba asiatica formed a separate group with species of the genera Natronorubrum and Natronolimnobius. Species of the genus Natronorubrum were split into two groups in both the rpoB′ gene and protein trees. The most important advantage of the use of the rpoB′ gene over the 16S rRNA gene is that sequences of the former are highly conserved amongst species of the family Halobacteriaceae. All sequences determined so far can be aligned unambiguously without any gaps. On the other hand, gaps are necessary at 49 positions in the inner part of the alignment of 16S rRNA gene sequences. The rpoB′ gene and protein sequences can be used as an excellent alternative molecular marker in phylogenetic analysis of the Halobacteriaceae.


2018 ◽  
Author(s):  
Andysah Putera Utama Siahaan ◽  
Rusiadi

The purpose of this study is to obtain a predictive pattern of the integration of ASEAN financial markets with the Multifactor Arbitrage Pricing Theory (APT) approach. The specific target in this study is Analyzing the effectiveness of the Multifactor APT Model in forming a predictive pattern of financial market integration in Southeast Asian countries, both in the short, medium and long-term. Establish the fastest and most appropriate ASEAN country in predicting financial market integration in Southeast Asian countries, both in the short, medium and long-term. The hypothesis in this study is that the Multifactor APT model is useful in forming a predictive pattern of financial market integration in Southeast Asian countries. Indonesia is the fastest and appropriate ASEAN country to use in predicting the occurrence of financial market integration in Southeast Asian countries. The data analysis model used is Vector Autoregression (VAR), Impulse Response Function (IRF), Forecast Error Variance Decomposition (FEVD). The assumption test used is Stationarity Test, Cointegration Test, Lag Stability Test, VAR Structure and Determination of Optimal Lag Levels. The results of data analysis with VAR are expected to be able to form a pattern of predictions of effective financial market integration in ASEAN countries. Varian Decomposition results can determine which ASEAN countries are the fastest and most appropriate in predicting the occurrence of financial market integration in Southeast Asian countries, both in the short, medium and long-term.


2018 ◽  
Vol 3 (2) ◽  
pp. 134-141
Author(s):  
Candra Irawan

ASEAN countries need to be encouraged to make responsive, effective, efficient, non-discriminatory, and pro-competition regulations that are adjusted AEC Blueprint 2025. This means that each ASEAN country needs to harmonize regulations so that the rules that apply in each national territory do not conflict with each other and in line with AEC Blueprint 2025. There is no clear regulation system in force in ASEAN, nor is the legal harmonization mechanism and binding power of the AEC. Questions that should be asked, is the legal basis for the implementation of AEC Blueprint 2025 deliberately based on international agreements only (intergovernmental, soft law) and not upgraded to legal force (primacy principles, hard law)? The most important thing is that there is a shared awareness to build the ASEAN region's economy more productive, advanced and shared prosperity. The commitment is not enough just to use soft law approach, but must be followed by hard law approach (primacy principles). ASEAN leaders should hold talks and seek agreement to implement the principle of supranational (primacy principles) that the implementation of the AEC Blueprint 2025 be adhered to by all member states.


2018 ◽  
Vol 3 (2) ◽  
pp. 99-108
Author(s):  
Zainal Amin Ayub ◽  
Zuryati Mohammed Yusoof

The realization of ASEAN Community 2015 opens a hope of a new era for migrant workers amongst its member countries. The hope is on the comprehensive legal protection for migrant workers against injustice as well as trafficking in the ASEAN Communities. This article aims to looks into the legal framework within few ASEAN countries that provides protection for migrant workers against injustice and human trafficking, and the available recourse to justice for them in case they become the victim of human trafficking. Malaysia becomes the case study as lesson learnt. Doctrinal methodology is adopted in this article. It is found that, in regards to protection of migrant workers, despite the establishment of ASEAN Community 2015, the laws on this regard are scattered. A few members of ASEAN Community are reluctant to embed the protection of migrant workers into their national laws. Also, it is found that ASEAN country like Malaysia has the laws at national level to curb human trafficking of migrant workers. However, though the laws seem to be comprehensive, the effectiveness of its implementation and enforcement of the laws are yet to be seen. It is suggested that the laws on protection of migrant workers to be harmonized and standardised between members of ASEAN Community and the cooperation within members of ASEAN should be enhanced at every level.


Author(s):  
Ahmed Hafez ◽  
Ricardo Futami ◽  
Amir Arastehfar ◽  
Farnaz Daneshnia ◽  
Ana Miguel ◽  
...  

Abstract Motivation Sequence analyses oriented to investigate specific features, patterns and functions of protein and DNA/RNA sequences usually require tools based on graphic interfaces whose main characteristic is their intuitiveness and interactivity with the user’s expertise, especially when curation or primer design tasks are required. However, interface-based tools usually pose certain computational limitations when managing large sequences or complex datasets, such as genome and transcriptome assemblies. Having these requirments in mind we have developed SeqEditor an interactive software tool for nucleotide and protein sequences’ analysis. Result SeqEditor is a cross-platform desktop application for the analysis of nucleotide and protein sequences. It is managed through a Graphical User Interface and can work either as a graphical sequence browser or as a fasta task manager for multi-fasta files. SeqEditor has been optimized for the management of large sequences, such as contigs, scaffolds or even chromosomes, and includes a GTF/GFF viewer to visualize and manage annotation files. In turn, this allows for content mining from reference genomes and transcriptomes with similar efficiency to that of command line tools. SeqEditor also incorporates a set of tools for singleplex and multiplex PCR primer design and pooling that uses a newly optimized and validated search strategy for target and species-specific primers. All these features make SeqEditor a flexible application that can be used to analyses complex sequences, design primers in PCR assays oriented for diagnosis, and/or manage, edit and personalize reference sequence datasets. Availabilityand implementation SeqEditor was developed in Java using Eclipse Rich Client Platform and is publicly available at https://gpro.biotechvana.com/download/SeqEditor as binaries for Windows, Linux and Mac OS. The user manual and tutorials are available online at https://gpro.biotechvana.com/tool/seqeditor/manual. Supplementary information Supplementary data are available at Bioinformatics online.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 490 ◽  
Author(s):  
Sharma ◽  
Gupta

The class Hematozoa encompasses several clinically important genera, including Plasmodium, whose members cause the major life-threating disease malaria. Hence, a good understanding of the interrelationships of organisms from this class and reliable means for distinguishing them are of much importance. This study reports comprehensive phylogenetic and comparative analyses on protein sequences on the genomes of 28 hematozoa species to understand their interrelationships. In addition to phylogenetic trees based on two large datasets of protein sequences, detailed comparative analyses were carried out on the genomes of hematozoa species to identify novel molecular synapomorphies consisting of conserved signature indels (CSIs) in protein sequences. These studies have identified 79 CSIs that are exclusively present in specific groups of Hematozoa/Plasmodium species, also supported by phylogenetic analysis, providing reliable means for the identification of these species groups and understanding their interrelationships. Of these CSIs, six CSIs are specifically shared by all hematozoa species, two CSIs serve to distinguish members of the order Piroplasmida, five CSIs are uniquely found in all Piroplasmida species except B. microti and two CSIs are specific for the genus Theileria. Additionally, we also describe 23 CSIs that are exclusively present in all genome-sequenced Plasmodium species and two, nine, ten and eight CSIs which are specific for members of the Plasmodium subgenera Haemamoeba, Laverania, Vinckeia and Plasmodium (excluding P. ovale and P. malariae), respectively. Additionally, our work has identified several CSIs that support species relationships which are not evident from phylogenetic analysis. Of these CSIs, one CSI supports the ancestral nature of the avian-Plasmodium species in comparison to the mammalian-infecting groups of Plasmodium species, four CSIs strongly support a specific relationship of species between the subgenera Plasmodium and Vinckeia and three CSIs each that reliably group P. malariae with members of the subgenus Plasmodium and P. ovale within the subgenus Vinckeia, respectively. These results provide a reliable framework for understanding the evolutionary relationships among the Plasmodium/Piroplasmida species. Further, in view of the exclusivity of the described molecular markers for the indicated groups of hematozoa species, particularly large numbers of unique characteristics that are specific for all Plasmodium species, they provide important molecular tools for biochemical/genetic studies and for developing novel diagnostics and therapeutics for these organisms.


2006 ◽  
Vol 04 (01) ◽  
pp. 59-74 ◽  
Author(s):  
YING-JUN HE ◽  
TRINH N. D. HUYNH ◽  
JESPER JANSSON ◽  
WING-KIN SUNG

To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a set of species is a well-studied problem in computational biology. One previously proposed method to infer a phylogenetic tree/network for a large set of species is by merging a collection of known smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching information is lost. However, little work has been done so far on inferring a phylogenetic tree/network from a specified set of trees when in addition, certain evolutionary relationships among the species are known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic tree/network which is consistent with all of the rooted triplets in a given set [Formula: see text] and none of the rooted triplets in another given set [Formula: see text]. Although NP-hard in the general case, we provide some efficient exact and approximation algorithms for a number of biologically meaningful variants of the problem.


Sign in / Sign up

Export Citation Format

Share Document