The Gravitational Force Generated by an Interaction between Matter and the ZPF field in the Vacuum, and the Property of a Superfluid Vacuum

2015 ◽  
Vol 8 (1) ◽  
pp. 1976-1981
Author(s):  
Casey McMahon

The principle postulate of general relativity appears to be that curved space or curved spacetime is gravitational, in that mass curves the spacetime around it, and that this curved spacetime acts on mass in a manner we call gravity. Here, I use the theory of special relativity to show that curved spacetime can be non-gravitational, by showing that curve-linear space or curved spacetime can be observed without exerting a gravitational force on mass to induce motion- as well as showing gravity can be observed without spacetime curvature. This is done using the principles of special relativity in accordance with Einstein to satisfy the reader, using a gravitational equivalence model. Curved spacetime may appear to affect the apparent relative position and dimensions of a mass, as well as the relative time experienced by a mass, but it does not exert gravitational force (gravity) on mass. Thus, this paper explains why there appears to be more gravity in the universe than mass to account for it, because gravity is not the resultant of the curvature of spacetime on mass, thus the “dark matter” and “dark energy” we are looking for to explain this excess gravity doesn’t exist.


2015 ◽  
Vol 7 (3) ◽  
pp. 1959-1969 ◽  
Author(s):  
C. Y. Lo

The Biefeld-Brown (B-B) effect consists of two parts: 1) the initial thrust is due to the electric potential that moves the electrons to the positive post; and 2) the subsequent lift is due to the separate concentration of the positive and the negative charges. The weight reduction of a charged capacitor is due to a repulsive charge-mass interaction, which is normally cancelled by the attractive current-mass interaction. In a charged capacitor, some electrons initially moving in the orbits become statically concentrated and thus a net repulsive force is exhibited. Based on observations, it is concluded that a repulsive charge-mass interaction is proportional to the charge density square and diminishes faster than the attractive gravitational force, and that the current-mass force is perpendicular to the current. This charge-mass interaction is crucial to establish the unification of electromagnetism and gravitation. To confirm general relativity further, experimental verification of the details of this mass-charge repulsive force is recommended. Moreover, general relativity implies that the photons must include gravitational energy and this explains that experiments show that the photonic energy is equivalent to mass although the electromagnetic energy-stress tensor is traceless. In general relativity,it is crucial to understandnon-linear mathematics and that the Einstein equation has no bounded dynamic solutions. However, due to following Einstein's errors, theorists failed in understanding these and ignored experimental facts on repulsive gravitation. Since the charge-mass interaction occurs in many areas of physics, Einstein's unification is potentially another revolution in physics. Moreover, the existence of a repulsive gravitation implies the necessity of re-justifying anew the speculation of black holes.


2021 ◽  
Vol 52 ◽  
pp. 115-122
Author(s):  
Riccardo Rossi ◽  
Mariaelena Tagliabue ◽  
Massimiliano Gastaldi ◽  
Giulia De Cet ◽  
Francesca Freuli ◽  
...  

1997 ◽  
Vol 12 (07) ◽  
pp. 1373-1384 ◽  
Author(s):  
P. R. Silva

An extension of the MIT bag model, developed to describe the strong interaction inside the hadronic matter (nucleons), is proposed as a means to account for the confinement of matter in the universe. The basic hypotheses of the MIT bag model are worked out in a very simplified way and are also translated in terms of the gravitational force. We call the nucleon "microcosmos" and the bag-universe "macrocosmos." We have found a vacuum pressure of 10-15 atm at the boundary of the bag-universe as compared with a pressure of 1029 atm at the boundary of the nucleon. Both universes are also analyzed in the light of Sciama's theory of inertia, which links the inertial mass of a body to its interaction with the rest of the universe. One of the consequences of this work is that the Weinberg mass can be interpreted as a threshold mass, namely the mass where the frequency of the small oscillations of a particle coupled to the universe matches its de Broglie frequency. Finally, we estimate an averaged density of matter in the universe, corresponding to [Formula: see text] of the critical or closure density.


Author(s):  
Ram Gopal Vishwakarma

The dark matter problem is one of the most pressing problems in modern physics. As there is no well-established claim from a direct detection experiment supporting the existence of the illusive dark matter that has been postulated to explain the flat rotation curves of galaxies, and since the whole issue of an alternative theory of gravity remains controversial, it may be worth to reconsider the familiar ground of general relativity (GR) itself for a possible way out. It has recently been discovered that a skew-symmetric rank-three tensor field — the Lanczos tensor field — that generates the Weyl tensor differentially, provides a proper relativistic analogue of the Newtonian gravitational force. By taking account of its conformal invariance, the Lanczos tensor leads to a modified acceleration law which can explain, within the framework of GR itself, the flat rotation curves of galaxies without the need for any dark matter whatsoever.


Author(s):  
Bin Zheng ◽  
Hae Chang Gea

In this paper, topology optimization problems with two types of body force are considered: gravitational force and centrifugal force. For structural design under both external and gravitational forces, a total mean compliance formulation is used to produce the stiffest structure. For rotational structural design with high angular velocity, one additional design criteria, kinetic energy, is included in the formulation. Sensitivity analyses of the total mean compliance and kinetic energy are derived. Finally, design examples are presented and compared to show the effects of body forces on the optimized results.


2003 ◽  
Vol 89 (1) ◽  
pp. 390-400 ◽  
Author(s):  
L. H. Zupan ◽  
D. M. Merfeld

Sensory systems often provide ambiguous information. For example, otolith organs measure gravito-inertial force (GIF), the sum of gravitational force and inertial force due to linear acceleration. However, according to Einstein's equivalence principle, a change in gravitational force due to tilt is indistinguishable from a change in inertial force due to translation. Therefore the central nervous system (CNS) must use other sensory cues to distinguish tilt from translation. For example, the CNS might use dynamic visual cues indicating rotation to help determine the orientation of gravity (tilt). This, in turn, might influence the neural processes that estimate linear acceleration, since the CNS might estimate gravity and linear acceleration such that the difference between these estimates matches the measured GIF. Depending on specific sensory information inflow, inaccurate estimates of gravity and linear acceleration can occur. Specifically, we predict that illusory tilt caused by roll optokinetic cues should lead to a horizontal vestibuloocular reflex compensatory for an interaural estimate of linear acceleration, even in the absence of actual linear acceleration. To investigate these predictions, we measured eye movements binocularly using infrared video methods in 17 subjects during and after optokinetic stimulation about the subject's nasooccipital (roll) axis (60°/s, clockwise or counterclockwise). The optokinetic stimulation was applied for 60 s followed by 30 s in darkness. We simultaneously measured subjective roll tilt using a somatosensory bar. Each subject was tested in three different orientations: upright, pitched forward 10°, and pitched backward 10°. Five subjects reported significant subjective roll tilt (>10°) in directions consistent with the direction of the optokinetic stimulation. In addition to torsional optokinetic nystagmus and afternystagmus, we measured a horizontal nystagmus to the right during and following clockwise (CW) stimulation and to the left during and following counterclockwise (CCW) stimulation. These measurements match predictions that subjective tilt in the absence of real tilt should induce a nonzero estimate of interaural linear acceleration and, therefore, a horizontal eye response. Furthermore, as predicted, the horizontal response in the dark was larger for Tilters ( n = 5) than for Non-Tilters ( n= 12).


2011 ◽  
Vol 11 (4) ◽  
pp. 5-5 ◽  
Author(s):  
A. Moscatelli ◽  
F. Lacquaniti

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 395-409 ◽  
Author(s):  
Mayeul Arminjon

AbstractAn alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes’ thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton’s second law. This implies Einstein’s geodesic motion for free particles only in a constant gravitational field. In this work, equations governing the dynamics of a continuous medium subjected to gravitational and non-gravitational forces are derived. Then, the case where the non-gravitational force is the Lorentz force is investigated. The gravitational modification of Maxwell’s equations is obtained under the requirement that a charged continuous medium, subjected to the Lorentz force, obeys the equation derived for continuum dynamics under external forces. These Maxwell equations are shown to be consistent with the dynamics of a “free” photon, and thus with the geometrical optics of this theory. However, these equations do not imply local charge conservation, except for a constant gravitational field.


2015 ◽  
Vol 116 (2) ◽  
pp. 149-187 ◽  
Author(s):  
Peter W. Barlow

Sign in / Sign up

Export Citation Format

Share Document