Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)

2013 ◽  
Vol 85 (12) ◽  
pp. 2249-2311 ◽  
Author(s):  
Kipton J. Powell ◽  
Paul L. Brown ◽  
Robert H. Byrne ◽  
Tamás Gajda ◽  
Glenn Hefter ◽  
...  

The numerical modeling of ZnII speciation amongst the environmental inorganic ligands Cl–, OH–, CO32–, SO42–, and PO43– requires reliable values for the relevant stability (formation) constants. This paper compiles and provides a critical review of these constants and related thermodynamic data. It recommends values of log10βp,q,r° valid at Im = 0 mol·kg–1 and 25 °C (298.15 K), and reports the empirical reaction ion interaction coefficients, ∆ε, required to calculate log10βp,q,r values at higher ionic strengths using the Brønsted–Guggenheim–Scatchard specific ion interaction theory (SIT). Values for the corresponding reaction enthalpies, ∆rH, are reported where available. There is scope for additional high-quality measurements for the Zn2+ + H+ + CO32– system and for the Zn2+ + OH– and Zn2+ + SO42– systems at I > 0. In acidic and weakly alkaline fresh water systems (pH < 8), in the absence of organic ligands (e.g., humic substances), ZnII speciation is dominated by Zn2+(aq). In this respect, ZnII contrasts with CuII and PbII (the subjects of earlier reviews in this series) for which carbonato- and hydroxido- complex formation become important at pH > 7. The speciation of ZnII is dominated by ZnCO3(aq) only at pH > 8.4. In seawater systems, the speciation at pH = 8.2 is dominated by Zn2+(aq) with ZnCl+, Zn(Cl)2(aq), ZnCO3(aq), and ZnSO4(aq) as minor species. This behaviour contrasts with that for CuII and PbII for which at the pH of seawater in equilibrium with the atmosphere at 25 °C (log10 {[H+]/c°} ≈ 8.2) the MCO3(aq) complex dominates over the MCln(2–n)+ species. The lower stability of the different complexes of ZnII compared with those of CuII, PbII, and CdII is also illustrated by the percentage of uncomplexed M2+ in seawater, which is ca. 55, 3, 2, and 3.3 % of [MII]T, respectively.

2007 ◽  
Vol 79 (5) ◽  
pp. 895-950 ◽  
Author(s):  
Kipton J. Powell ◽  
Paul L. Brown ◽  
Robert H. Byrne ◽  
Tamás Gajda ◽  
Glenn Hefter ◽  
...  

Complex formation between CuII and the common environmental ligands Cl-, OH-, CO32-, SO42-, and PO43- can have a significant effect on CuII speciation in natural waters with low concentrations of organic matter. Copper(II) complexes are labile, so the CuII distribution amongst these inorganic ligands can be estimated by numerical modeling if reliable values for the relevant stability (formation) constants are available. This paper provides a critical review of such constants and related thermodynamic data. It recommends values of log10βp,q,r° valid at Im = 0 mol kg-1 and 25 °C (298.15 K), along with the equations and specific ion interaction coefficients required to calculate log10βp,q,r values at higher ionic strengths. Some values for reaction enthalpies, ΔrHm, are also reported where available. In weakly acidic fresh water systems, in the absence of organic ligands, CuII speciation is dominated by the species Cu2+(aq), with CuSO4(aq) as a minor species. In seawater, it is dominated by CuCO3(aq), with Cu(OH)+, Cu2+(aq), CuCl+, Cu(CO3)OH-, Cu(OH)2(aq), and Cu(CO3)22- as minor species. In weakly acidic saline systems, it is dominated by Cu2+(aq) and CuCl+, with CuSO4(aq) and CuCl2(aq) as minor species.


2011 ◽  
Vol 83 (5) ◽  
pp. 1163-1214 ◽  
Author(s):  
Kipton J. Powell ◽  
Paul L. Brown ◽  
Robert H. Byrne ◽  
Tamás Gajda ◽  
Glenn Hefter ◽  
...  

The numerical modeling of CdII speciation amongst the environmental inorganic ligands Cl–, OH–, CO32–, SO42–, and PO43– requires reliable values for the relevant stability (formation) constants. This paper compiles and provides a critical review of these constants and related thermodynamic data. It recommends values of log10βp,q,r° valid at Im = 0 mol kg–1 and 25 °C (298.15 K), along with the equations and empirical reaction ion interaction coefficients, ∆ε , required to calculate log10βp,q,r values at higher ionic strengths using the Brønsted–Guggenheim–Scatchard specific ion interaction theory (SIT). Values for the corresponding reaction enthalpies, ∆rH, are reported where available. Unfortunately, with the exception of the CdII-chlorido system and (at low ionic strengths) the CdII-sulfato system, the equilibrium reactions for the title systems are relatively poorly characterized. In weakly acidic fresh water systems (–log10 {[H+]/c°} < 6), in the absence of organic ligands (e.g., humic substances), CdII speciation is dominated by Cd2+(aq), with CdSO4(aq) as a minor species. In this respect, CdII is similar to CuII [2007PBa] and PbII [2009PBa]. However, in weakly alkaline fresh water solutions, 7.5 < –log10 {[H+]/c°} < 8.6, the speciation of CdII is still dominated by Cd2+(aq), whereas for CuII [2007PBa] and PbII [2009PBa] the carbonato- species MCO3(aq) dominates. In weakly acidic saline systems (–log10 {[H+]/cϒ} < 6; –log10 {[Cl–]/c°} < 2.0) the speciation is dominated by CdCln(2–n)+ complexes, (n = 1–3), with Cd2+(aq) as a minor species. This is qualitatively similar to the situation for CuII and PbII. However, in weakly alkaline saline solutions, including seawater, the chlorido- complexes still dominate the speciation of CdII because of the relatively low stability of CdCO3(aq). In contrast, the speciation of CuII [2007PBa] and PbII [2009PBa] in seawater is dominated by the respective species MCO3(aq). There is scope for additional high-quality measurements in the Cd2+ + H+ + CO32– system as the large uncertainties in the stability constants for the Cd2+-carbonato complexes significantly affect the speciation calculations.


2005 ◽  
Vol 77 (4) ◽  
pp. 739-800 ◽  
Author(s):  
Kipton J. Powell ◽  
Paul L. Brown ◽  
Robert H. Byrne ◽  
Tamás Gajda ◽  
Glenn Hefter ◽  
...  

This document presents a critical evaluation of the equilibrium constants and reaction enthalpies for the complex formation reactions between aqueous Hg(II) and the common environmental inorganic ligands Cl–, OH–, CO32–, SO42–, and PO43–. The analysis used data from the IUPAC Stability Constants database, SC-Database, focusing particularly on values for 25 °C and perchlorate media. Specific ion interaction theory (SIT) was applied to reliable data available for the ionic strength range Ic < 3.0 mol dm–3. Recommended values of log10βp,q,r° and the associated reaction enthalpies, ∆rHm°, valid at Im = 0 mol kg–1 and 25 °C, were obtained by weighted linear regression using the SIT equations. Also reported are the equations and specific ion interaction coefficients required to calculate log10βp,q,r° values at higher ionic strengths and other temperatures. A similar analysis is reported for the reactions of H+ with CO32– and PO43–. Diagrams are presented to show the calculated distribution of Hg(II) amongst these inorganic ligands in model natural waters. Under typical environmental conditions, Hg(II) speciation is dominated by the formation of HgCl2(aq), Hg(OH)Cl(aq), and Hg(OH)2(aq).


ChemInform ◽  
2007 ◽  
Vol 38 (40) ◽  
Author(s):  
Kipton J. Powell ◽  
Paul L. Brown ◽  
Robert H. Byrne ◽  
Tamas Gajda ◽  
Glenn Hefter ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 511 ◽  
Author(s):  
Francesco Crea ◽  
Concetta De Stefano ◽  
Anna Irto ◽  
Gabriele Lando ◽  
Stefano Materazzi ◽  
...  

The interactions of epinephrine ((R)-(−)-3,4-dihydroxy-α-(methylaminomethyl)benzyl alcohol; Eph−) with different toxic cations (methylmercury(II): CH3Hg+; dimethyltin(IV): (CH3)2Sn2+; dioxouranium(VI): UO22+) were studied in NaClaq at different ionic strengths and at T = 298.15 K (T = 310.15 K for (CH3)2Sn2+). The enthalpy changes for the protonation of epinephrine and its complex formation with UO22+ were also determined using isoperibolic titration calorimetry: ΔHHL = −39 ± 1 kJ mol−1, ΔHH2L = −67 ± 1 kJ mol−1 (overall reaction), ΔHML = −26 ± 4 kJ mol−1, and ΔHM2L2(OH)2 = 39 ± 2 kJ mol−1. The results were that UO22+ complexation by Eph− was an entropy-driven process. The dependence on the ionic strength of protonation and the complex formation constants was modeled using the extended Debye–Hückel, specific ion interaction theory (SIT), and Pitzer approaches. The sequestering ability of adrenaline toward the investigated cations was evaluated using the calculation of pL0.5 parameters. The sequestering ability trend resulted in the following: UO22+ >> (CH3)2Sn2+ > CH3Hg+. For example, at I = 0.15 mol dm−3 and pH = 7.4 (pH = 9.5 for CH3Hg+), pL0.5 = 7.68, 5.64, and 2.40 for UO22+, (CH3)2Sn2+, and CH3Hg+, respectively. Here, the pH is with respect to ionic strength in terms of sequestration.


2009 ◽  
Vol 81 (9) ◽  
pp. 1585-1590 ◽  
Author(s):  
Leslie Pettit ◽  
Gwyneth Pettit

The IUPAC Stability Constants Database (SC-Database), designed to contain all significant published constants, provides the most complete and accessible route to stability constants in the literature. Collection of new constants is becoming less significant since most are now measured to confirm a mechanism or to identify bonding centers, not to provide data for general use. As a result, constants are often measured less rigorously and are of lower accuracy. What are required now are critical evaluations of existing data, coupled with accurate study of a number of important and superficially simpler systems (e.g., complexes with some inorganic ligands). Calculation of species distribution curves is a major use of stability constants. Ways of reflecting possible errors in the calculated curves are now required. Historically, curves have been drawn as sharp lines, but these could only result from using the exact stability constants with an accurate model for the system. Two techniques for demonstrating the effect of errors are outlined. Constants are dependent on ionic strength and temperature changes. Specific ion interaction theory (SIT) is the most general method of compensating for ionic strength changes up to about 5 molal. Software to correct constants for ionic strength changes, prepared under recent IUPAC projects, is described.


2004 ◽  
Vol 57 (10) ◽  
pp. 993 ◽  
Author(s):  
Kipton J. Powell ◽  
Paul L. Brown ◽  
Robert H. Byrne ◽  
Tamas Gajda ◽  
Glenn Hefter ◽  
...  

Abstract Complex formation between Hg(ii) and the common environmental ligands Cl−, OH−, CO32−, SO42−, and PO43− can have profound effects on Hg(ii) speciation in natural waters with low concentrations of organic matter. Hg(ii) is labile, so its distribution among these inorganic ligands can be estimated by numerical modelling if reliable values for the relevant stability constants are available. A summary of critically reviewed constants and related thermodynamic data is presented. Recommended values of log10βp,q,r° and the associated reaction enthalpies, ΔrHm°, valid at Im = 0 mol kg−1 and 25°C, along with the equations and specific ion interaction coefficients required to calculate log10βp,q,r values at higher ionic strengths and other temperatures are also presented. Under typical environmental conditions Hg(ii) speciation is dominated by the reactions Hg2+ + 2Cl− ↔ HgCl2(aq) (log10β2° = 14.00 ± 0.07), Hg2+ + Cl− + H2O ↔ Hg(OH)Cl(aq) + H+ (log10β° = 4.27 ± 0.35), and Hg2+ + 2H2O ↔ Hg(OH)2(aq) + 2H+ (log10*β2° = −5.98 ± 0.06).


2005 ◽  
Vol 93 (11) ◽  
Author(s):  
Wolfgang Hummel ◽  
Giorgio Anderegg ◽  
Ignasi Puigdomènech ◽  
Linfeng Rao ◽  
Osamu Tochiyama

SummaryWithin the scope of the OECD Nuclear Energy Agency (NEA) Thermochemical Data Base Project (TDB) a comprehensive review of selected organic ligands has been carried out by the authors. The selected ligands are oxalate, citrate, ethylenediaminetetraacetate (edta) and α-isosaccharinate (isa), and the elements considered in the review are U, Np, Pu, Am, Tc, Ni, Se and Zr, as well as the necessary basic data concerning protonation of the ligands and interactions with the major competing elements Na, K, Mg and Ca. This review on organic ligands showed that the pragmatic ionic strength correction procedure, the Specific ion Interaction Theory (SIT), chosen as the default method for all NEA TDB reviews, can be applied successfully also to organic ligands. The SIT interaction parameters derived from ligand protonation data for different media,


Sign in / Sign up

Export Citation Format

Share Document