Theoretical error analysis of the sampling moiré method and phase compensation methodology for single-shot phase analysis

2012 ◽  
Vol 51 (16) ◽  
pp. 3214 ◽  
Author(s):  
Shien Ri ◽  
Takashi Muramatsu
2011 ◽  
Vol 70 ◽  
pp. 243-248
Author(s):  
Shien Ri ◽  
Takashi Muramatsu ◽  
Masumi Saka

Recently, a technique for fast and accurate phase analysis called sampling moiré method has been developed for measurement of small-displacement distribution. In this study, a distribution of phase error caused by linear interpolation in case with mismatch between the sampling pitch and the grating pitch is theoretically analyzed. Moreover, a technique for effective phase compensation is proposed to reduce the periodic phase error. The performance of our compensation method is validated by a computer simulation. Phase analysis can be performed more accurately even in the case that the sampling pitch does not match to the grating pitch strictly.


2011 ◽  
Vol 83 ◽  
pp. 48-53 ◽  
Author(s):  
Motoharu Fujigaki ◽  
Yuji Sasatani ◽  
Akihiro Masaya ◽  
Hiroyuki Kondo ◽  
Makiko Nakabo ◽  
...  

Sampling Moire method is one of the convenient phase analysis methods. The accuracy of phase difference analysis is from 1/100 to 1/1000 of the grating pitches. This method is useful for a real-time measurement because the phase analysis can be performed from a single-shot image. In this paper, we developed a sampling moire camera which can analyze grating phase in real time. This camera is composed of a CMOS sensor and a FPGA. A two-dimensional grating image taken by the CMOS sensor was analyzed by the FPGA in real time. An application on a real-time deformation measurement of a cantilever is demonstrated.


2020 ◽  
Vol 13 (12) ◽  
pp. 6837-6852
Author(s):  
Seidai Nara ◽  
Tomohiro O. Sato ◽  
Takayoshi Yamada ◽  
Tamaki Fujinawa ◽  
Kota Kuribayashi ◽  
...  

Abstract. Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the upper stratosphere. The HCl molecule is observed to obtain long-term quantitative estimations of the total budget of the stratospheric chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from space. The HCl vertical profile from the upper troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparison with other measurements and via theoretical error analysis. We used the SMILES level-2 research product version 3.0.0. The period of the SMILES HCl observation was from 12 October 2009 to 21 April 2010, and the latitude coverage was 40∘ S–65∘ N. The average HCl vertical profile showed an increase with altitude up to the stratopause (∼ 45 km), approximately constant values between the stratopause and the upper mesosphere (∼ 80 km), and a decrease from the mesopause to the lower thermosphere (∼ 100 km). This behavior was observed in all latitude regions and reproduced by the Whole Atmosphere Community Climate Model in the specified dynamics configuration (SD-WACCM). We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from Microwave Limb Sounder (MLS) on the Aura satellite, as well as from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT and the TErahertz and submillimeter LImb Sounder (TELIS) (balloon borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES agreed well with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km (within 10 % between 30 and 40 km; there is a larger discrepancy below 30 km), respectively. The SMILES HCl concentration was smaller than those of MLS and ACE-FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv (12 %–15 %) at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The Jacobian for the temperature explains the negative bias of the SMILES HCl concentrations at 50–60 km.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 36312-36321 ◽  
Author(s):  
Bing Jia ◽  
Baoqi Huang ◽  
Hepeng Gao ◽  
Wuyungerile Li ◽  
Lifei Hao

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
George Caminha-Maciel ◽  
Irineu Figueiredo

We present an analysis of the error involved in the so-called low induction number approximation in the electromagnetic methods. In particular, we focus on the EM34 equipment settings and field configurations, widely used for geophysical prospecting of laterally electrical conductivity anomalies and shallow targets. We show the theoretical error for the conductivity in both vertical and horizontal dipole coil configurations within the low induction number regime and up to the maximum measuring limit of the equipment. A linear relationship may be adjusted until slightly beyond the point where the conductivity limit for low induction number (B=1) is reached. The equations for the linear fit of the relative error in the low induction number regime are also given.


Sign in / Sign up

Export Citation Format

Share Document