Autofluorescence Detection of Tumors in the Human Lung -- Comparison between in vivo and in vitro Measurements

Author(s):  
Dirk Hüttenberger ◽  
Tanja Gabrecht ◽  
G. Wagnieres ◽  
B. Weber ◽  
Albert Linder ◽  
...  
2005 ◽  
Author(s):  
D. Huttenberger ◽  
T. Gabrecht ◽  
G. Wagnieres ◽  
B. Weber ◽  
A. Linder ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


1999 ◽  
Vol 19 (5) ◽  
pp. 3257-3266 ◽  
Author(s):  
Xiaoya Zeng ◽  
Lihong Chen ◽  
Christine A. Jost ◽  
Ruth Maya ◽  
David Keller ◽  
...  

ABSTRACT The newly identified p53 homolog p73 can mimic the transcriptional activation function of p53. We investigated whether p73, like p53, participates in an autoregulatory feedback loop with MDM2. p73 bound to MDM2 both in vivo and in vitro. Wild-type but not mutant MDM2, expressed in human p53 null osteosarcoma Saos-2 cells, inhibited p73- and p53-dependent transcription driven by the MDM2 promoter-derived p53RE motif as measured in transient-transfection and chloramphenicol acetyltransferase assays and also inhibited p73-induced apoptosis in p53-null human lung adenocarcinoma H1299 cells. MDM2 did not promote the degradation of p73 but instead disrupted the interaction of p73, but not of p53, with p300/CBP by competing with p73 for binding to the p300/CBP N terminus. Both p73α and p73β stimulated the expression of the endogenous MDM2 protein. Hence, MDM2 is transcriptionally activated by p73 and, in turn, negatively regulates the function of this activator through a mechanism distinct from that used for p53 inactivation.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Panfeng Fu ◽  
Anne E Cress ◽  
Ting Wang ◽  
Joe G Garcia ◽  
Viswanathan Natarajan

Paxillin, a multi-domain scaffold-adapter focal adhesion (FA) protein, plays an important role in facilitating protein networking and efficient signaling transduction. Paxillin is phosphorylated at multiple serine/threonine and tyrosine residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and the acute respiratory distress syndrome (ARDS) remains unclear. In this study, we used paxillin-specific siRNA and site-specific non-phosphorylatable mutants of paxillin to abrogate the function of paxillin, both in vitro and in vivo, to determine its role in the regulation of lung endothelial permeability and ARDS. In vitro, lipopolysaccharide (LPS) challenge of human lung microvascular endothelial cells (ECs) resulted in paxillin accumulation at focal adhesions, enhanced tyrosine phosphorylation of paxillin at Y31 and Y118, and significant endothelial barrier dysfunction. However no significant changes in Y181 phosphorylation by LPS challenge was observed. Paxillin silencing (siRNA) attenuated LPS-induced endothelial barrier dysfunction and dissociation of VE-cadherin from adherens junctions. LPS-induced paxillin phosphorylation at Y31 and Y118 was mediated by c-Abl tyrosine kinase and not by Src or focal adhesion kinase (FAK) in human lung microvascular ECs. Furthermore, down-regulation of c-Abl (siRNA) significantly reduced LPS-mediated endothelial barrier dysfunction. Transfection of human lung microvascular ECs with paxillin Y31, Y118 and Y31/Y118 mutants mitigated LPS-induced barrier dysfunction and VE-cadherin destabilization at adherens junctions. In vivo, knockdown of paxillin with siRNA in mouse lungs ameliorated LPS-induced pulmonary protein leak and lung inflammation. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates LPS-mediated pulmonary vascular permeability and injury.


Sign in / Sign up

Export Citation Format

Share Document