scholarly journals In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens

2014 ◽  
Vol 22 (17) ◽  
pp. 20130 ◽  
Author(s):  
Bingbing Li ◽  
Huan Qin ◽  
Sihua Yang ◽  
Da Xing
NeuroImage ◽  
2021 ◽  
pp. 118260
Author(s):  
Wei Qin ◽  
Qi Gan ◽  
Lei Yang ◽  
Yongchao Wang ◽  
Weizhi Qi ◽  
...  

Author(s):  
Yinhao Pan ◽  
Ningbo Chen ◽  
Liangjian Liu ◽  
Chengbo Liu ◽  
Zhiqiang Xu ◽  
...  

AbstractPhotoacoustic microscopy is an in vivo imaging technology based on the photoacoustic effect. It is widely used in various biomedical studies because it can provide high-resolution images while being label-free, safe, and harmless to biological tissue. Polygon-scanning is an effective scanning method in photoacoustic microscopy that can realize fast imaging of biological tissue with a large field of view. However, in polygon-scanning, fluctuations of the rotating motor speed and the geometric error of the rotating mirror cause image distortions, which seriously affect the photoacoustic-microscopy imaging quality. To improve the image quality of photoacoustic microscopy using polygon-scanning, an image correction method is proposed based on accurate ultrasound positioning. In this method, the photoacoustic and ultrasound imaging data of the sample are simultaneously obtained, and the angle information of each mirror used in the polygon-scanning is extracted from the ultrasonic data to correct the photoacoustic images. Experimental results show that the proposed method can significantly reduce image distortions in photoacoustic microscopy, with the image dislocation offset decreasing from 24.774 to 10.365 μm.


2010 ◽  
Vol 35 (19) ◽  
pp. 3195 ◽  
Author(s):  
Chi Zhang ◽  
Konstantin Maslov ◽  
Lihong V. Wang

2014 ◽  
Vol 5 (12) ◽  
pp. 4235 ◽  
Author(s):  
Wei Song ◽  
Wei Zheng ◽  
Ruimin Liu ◽  
Riqiang Lin ◽  
Hongtao Huang ◽  
...  

2012 ◽  
Vol 32 (6) ◽  
pp. 938-951 ◽  
Author(s):  
Lun-De Liao ◽  
Chin-Teng Lin ◽  
Yen-Yu I Shih ◽  
Timothy Q Duong ◽  
Hsin-Yi Lai ◽  
...  

Optical imaging of changes in total hemoglobin concentration ( HbT), cerebral blood volume ( CBV), and hemoglobin oxygen saturation ( SO 2) provides a means to investigate brain hemodynamic regulation. However, high-resolution transcranial imaging remains challenging. In this study, we applied a novel functional photoacoustic microscopy technique to probe the responses of single cortical vessels to left forepaw electrical stimulation in mice with intact skulls. Functional changes in HbT, CBV, and SO 2 in the superior sagittal sinus and different-sized arterioles from the anterior cerebral artery system were bilaterally imaged with unambiguous 36 × 65- μm2 spatial resolution. In addition, an early decrease of SO 2 in single blood vessels during activation (i.e., ‘the initial dip’) was observed. Our results indicate that the initial dip occurred specifically in small arterioles of activated regions but not in large veins. This technique complements other existing imaging approaches for the investigation of the hemodynamic responses in single cerebral blood vessels.


Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.


2017 ◽  
Vol 25 (22) ◽  
pp. 26427 ◽  
Author(s):  
Kiri Lee ◽  
Euiheon Chung ◽  
Seungrag Lee ◽  
Tae Joong Eom

Sign in / Sign up

Export Citation Format

Share Document