scholarly journals On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors

2019 ◽  
Vol 44 (23) ◽  
pp. 5840
Author(s):  
Alaine Herrero-Bermello ◽  
Jiangfeng Li ◽  
Mohammad Khazaei ◽  
Yuri Grinberg ◽  
Aitor V. Velasco ◽  
...  
Author(s):  
Alaine Herrero-Bermello ◽  
Jiangfeng Li ◽  
Mohammad Khazaei ◽  
Yuri Grinberg ◽  
Aitor Villafranca-Velasco ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 689
Author(s):  
Tom Springer ◽  
Elia Eiroa-Lledo ◽  
Elizabeth Stevens ◽  
Erik Linstead

As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can provide the low-latency, deterministic execution required for embedded, and potentially safety-critical, applications at the edge. Despite this, studies considering the integration of real-time operating systems, specialized hardware, and machine learning/deep learning algorithms remain limited. In particular, better mechanisms for real-time scheduling in the context of machine learning applications will prove to be critical as these technologies move to the edge. In order to address some of these challenges, we present a resource management framework designed to provide a dynamic on-device approach to the allocation and scheduling of limited resources in a real-time processing environment. These types of mechanisms are necessary to support the deterministic behavior required by the control components contained in the edge nodes. To validate the effectiveness of our approach, we applied rigorous schedulability analysis to a large set of randomly generated simulated task sets and then verified the most time critical applications, such as the control tasks which maintained low-latency deterministic behavior even during off-nominal conditions. The practicality of our scheduling framework was demonstrated by integrating it into a commercial real-time operating system (VxWorks) then running a typical deep learning image processing application to perform simple object detection. The results indicate that our proposed resource management framework can be leveraged to facilitate integration of machine learning algorithms with real-time operating systems and embedded platforms, including widely-used, industry-standard real-time operating systems.


2016 ◽  
Vol 70 (5) ◽  
pp. 897-904 ◽  
Author(s):  
Mazen Erfan ◽  
Yasser M Sabry ◽  
Mohammad Sakr ◽  
Bassem Mortada ◽  
Mostafa Medhat ◽  
...  

The Analyst ◽  
2021 ◽  
Vol 146 (20) ◽  
pp. 6211-6219
Author(s):  
Hewa G. S. Wijesinghe ◽  
Dominic J. Hare ◽  
Ahmed Mohamed ◽  
Alok K. Shah ◽  
Patrick N. A. Harris ◽  
...  

ATR–FTIR with a machine learning model predicts ESBL genotype of unknown E. coli strains with 86.5% AUC.


Author(s):  
Mubashir Hussain ◽  
Xiaolong Liu ◽  
Jun Zou ◽  
Jian Yang ◽  
Zeeshan Ali ◽  
...  

Author(s):  
Benjamin B. Yellen ◽  
Jon S. Zawistowski ◽  
Eric A. Czech ◽  
Caleb I. Sanford ◽  
Elliott D. SoRelle ◽  
...  

AbstractSingle cell analysis tools have made significant advances in characterizing genomic heterogeneity, however tools for measuring phenotypic heterogeneity have lagged due to the increased difficulty of handling live biology. Here, we report a single cell phenotyping tool capable of measuring image-based clonal properties at scales approaching 100,000 clones per experiment. These advances are achieved by exploiting a novel flow regime in ladder microfluidic networks that, under appropriate conditions, yield a mathematically perfect cell trap. Machine learning and computer vision tools are used to control the imaging hardware and analyze the cellular phenotypic parameters within these images. Using this platform, we quantified the responses of tens of thousands of single cell-derived acute myeloid leukemia (AML) clones to targeted therapy, identifying rare resistance and morphological phenotypes at frequencies down to 0.05%. This approach can be extended to higher-level cellular architectures such as cell pairs and organoids and on-chip live-cell fluorescence assays.


Sign in / Sign up

Export Citation Format

Share Document