Insight into the Molecular Arrangement of High-Density Polyethylene Polymer Chains in Blends of Polystyrene/High-Density Polyethylene from Differential Scanning Calorimetry and Raman Techniques

2006 ◽  
Vol 60 (5) ◽  
pp. 483-489 ◽  
Author(s):  
Jayant Joshi ◽  
Richard Lehman ◽  
Gene S. Hall
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1459
Author(s):  
Agbelenko Koffi ◽  
Fayçal Mijiyawa ◽  
Demagna Koffi ◽  
Fouad Erchiqui ◽  
Lotfi Toubal

Wood–plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber–polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Yujing Tang ◽  
Zhiyong Jiang ◽  
Jens Rieger ◽  
Hans-Friedrich Enderle ◽  
Dieter Lilge ◽  
...  

AbstractThe isothermal crystallization behavior of two different high density polyethylene grades with monomodal and bimodal molar mass distribution was investigated by means of differential scanning calorimetry. The results indicate that extensive cocrystallization between linear short chains and long chains with short branches in bimodal polyethylene grade occurred. In contrast, polymer chains of different lengths in monomodal polyethylene exhibit different tendency to crystallize. This finding was explained qualitatively based on a general discussion of the effect of molar mass and branch content/length on crystallization tendency of polymeric chains.


2015 ◽  
Vol 35 (5) ◽  
pp. 437-442 ◽  
Author(s):  
Sam Sung Ting ◽  
Norsri Kurniati Achmad ◽  
Hanafi Ismail ◽  
Ragunathan Santiagoo ◽  
Nik Noriman Zulkepli

Abstract This study investigates the properties of high-density polyethylene (HDPE) with different soya spent powder (SSP) blend contents upon oven aging. The aged properties of the HDPE/SSP blends were studied by using tensile test, thermogravimetric analysis, differential scanning calorimetry and Fourier transform infrared analysis. The tensile strength and elongation at break (Eb) decreased inversely proportional to SSP content and aging period. The thermal stability of the blends was significantly reduced after 21 days of aging. After aging, the melting temperature and crystallinity of the blends decreased with increasing aging period. These results revealed that samples with higher SSP content are more brittle upon oven aging.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1874
Author(s):  
Enrique Blázquez-Blázquez ◽  
Ernesto Pérez ◽  
Vicente Lorenzo ◽  
María L. Cerrada

Blends of poly(ε-caprolactone) (PCL) and high-density polyethylene (HDPE) have been prepared at different compositions in order to assess the effect of HDPE on gas transport and mechanical behaviors of PCL. Previous to this evaluation, a complete morphological, structural, and thermal characterization were performed using techniques, including SEM, contact angle, FTIR, differential scanning calorimetry, and X-ray diffraction with synchrotron radiation at small and wide angles. Low HDPE incorporations allow interactions to be established at interfaces in the amorphous regions and the enhancement of the mechanical performance. Consequently, the addition of a small amount of HDPE (ranging from 5 to 10 wt%) appears to be appropriate in certain bio-applications where a higher mechanical behavior is required.


2016 ◽  
Vol 46 (8) ◽  
pp. 1491-1497
Author(s):  
Monique Barreto Santos ◽  
Bernardo de Sá Costa ◽  
Edwin Elard Garcia Rojas

ABSTRACT: The interactions between biological macromolecules have been important for biotechnology, but further understanding is needed to maximize the utility of these interactions. Calorimetric techniques provide information regarding these interactions through the thermal energy that is produced or consumed during interactions. Notable techniques include differential scanning calorimetry, which generates a thermodynamic profile from temperature scanning, and isothermal titration calorimetry that provide the thermodynamic parameters directly related to the interaction. This review described how calorimetric techniques can be used to study interactions between proteins and polysaccharides, and provided valuable insight into the thermodynamics of their interaction.


Sign in / Sign up

Export Citation Format

Share Document