Membranous Structures Directly Come in Contact With p62/SQSTM1 Bodies

2021 ◽  
pp. 002215542110114
Author(s):  
Isei Tanida ◽  
Tomohiro Haruta ◽  
Mitsuo Suga ◽  
Shunsuke Takei ◽  
Akira Takebe ◽  
...  

During autophagy, autophagosomes are formed to engulf cytoplasmic contents. p62/SQSTM-1 is an autophagic adaptor protein that forms p62 bodies. A unique feature of p62 bodies is that they seem to directly associate with membranous structures. We first investigated the co-localization of mKate2-p62 bodies with phospholipids using click chemistry with propargyl-choline. Propargyl-choline-labeled phospholipids were detected inside the mKate2-p62 bodies, suggesting that phospholipids were present inside the bodies. To clarify whether or not p62 bodies come in contact with membranous structures directly, we investigated the ultrastructures of p62 bodies using in-resin correlative light and electron microscopy of the Epon-embedded cells expressing mKate2-p62. Fluorescent-positive p62 bodies were detected as uniformly lightly osmificated structures by electron microscopy. Membranous structures were detected on and inside the p62 bodies. In addition, multimembranous structures with rough endoplasmic reticulum–like structures that resembled autophagosomes directly came in contact with amorphous-shaped p62 bodies. These results suggested that p62 bodies are unique structures that can come in contact with membranous structures directly:

1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kazuhiko Nakadate ◽  
Kento Motojima ◽  
Tomoya Hirakawa ◽  
Sawako Tanaka-Nakadate

Chronic obesity is a known risk factor for metabolic syndrome. However, little is known about pathological changes in the small intestine associated with chronic obesity. This study investigated cellular and subcellular level changes in the small intestine of obese mice. In this study, a mouse model of obesity was established by early postnatal administration of monosodium glutamate. Changes in body weight were monitored, and pathological changes in the small intestine were evaluated using hematoxylin-eosin and Nissl staining and light and electron microscopy. Consequently, obese mice were significantly heavier compared with controls from 9 weeks of age. Villi in the small intestine of obese mice were elongated and thinned. There was reduced hematoxylin staining in the epithelium of the small intestine of obese mice. Electron microscopy revealed a significant decrease in and shortening of rough endoplasmic reticulum in epithelial cells of the small intestine of obese mice compared with normal mice. The decrease in rough endoplasmic reticulum in the small intestine epithelial cells of obese mice indicates that obesity starting in childhood influences various functions of the small intestine, such as protein synthesis, and could impair both the defense mechanism against invasion of pathogenic microbes and nutritional absorption.


Botany ◽  
2014 ◽  
Vol 92 (7) ◽  
pp. 513-521 ◽  
Author(s):  
Thais Cury de Barros ◽  
Simone Pádua Teixeira

Two legume trees largely known as tannin producers — Dimorphandra mollis Benth. (Caesalpinioideae) and Stryphnodendron adstringens (Mart.) Coville (Mimosoideae) — were used as models to elucidate the morphology and ontogeny of tannin cells. Vegetative parts of plants were processed for observation using light and electron microscopy (scanning and transmission). Idioblasts, found even in young plants of both species, and secretory trichomes, observed in vegetative buds of mature plants of S. adstringens, are responsible for tannin production. The tanniniferous idioblasts originate from protoderm and also from ground meristem cells. The ground meristem proved to be the best place to study the development of tanniniferous idioblasts at different stages of development, which allowed us to monitor the production and accumulation of tannins in the same tissue. Our data indicate that there is a relationship between the production of tannins and the process of vacuolation of tanniniferous cells. The results also indicate the probable performance of rough endoplasmic reticulum (RER) and plastids in the production of tannins.


2010 ◽  
Vol 79 (2) ◽  
pp. 225-231 ◽  
Author(s):  
Lenka Krejčířová ◽  
Irena Lauschová ◽  
Petr Čížek

The aim of this work was to study the distribution of heavy metals and of subsequently developed morphological changes in the liver of female mice and their foetuses after oral administration of high doses of lead, mercury, and cadmium (0.03 mg of metal per mouse and day). Heavy metals were administered to pregnant female mice on days 9-20 of pregnancy. The animals were euthanised by cervical dislocation. Samples of mother and foetal liver were subsequently collected and processed by means of the common technique for light and electron microscopy. Histochemical reaction based on metal conversion into appropriate sulphide that conjugates with silver was used for detection of heavy metals. Deposits of heavy metals were found at the periphery of lobules of the central vein in the liver of female mice. On the contrary, in the liver of foetuses no predilection site for localisation of the reaction product could be identified. At the electron microscopy level, accumulation of heavy metals was connected as a rule with the occurrence of certain damage to some organelles. Deposits of the reaction product were located mainly in hepatocytes and Kupffer cells. Heavy metals were bound to the heterochromatin of cell nuclei, as well as to some cytoplasmic organelles, such as rough endoplasmic reticulum, mitochondria, ribosomes, and lysosomes. The presence of heavy metals was associated with obliteration of cisternae of the rough endoplasmic reticulum, separation of ribosomes, and destruction of lysosomes. Vacuolation of cell cytoplasm was also a frequent phenomenon. An interesting finding was the "contrasting" of structures containing nucleic acids. Accumulation of metals in the liver of pregnant mice and their foetuses observed in our study indicated that placental barrier does not protect the foetal organism against penetration of metals. Their higher accumulation in foetal compared to maternal liver can be explained by the intense metabolism of differentiating hepatocytes.


Author(s):  
R. A. Turner ◽  
A. E. Rodin ◽  
D. K. Roberts

There have been many reports which establish a relationship between the pineal and sexual structures, including gonadal hypertrophy after pinealectomy, and gonadal atrophy after injection of pineal homogenates or of melatonin. In order to further delineate this relationship the pineals from 5 groups of female rats were studied by electron microscopy:ControlsPregnant ratsAfter 4 weekly injections of 0.1 mg. estradiol benzoate.After 8 daily injections of 150 mcgm. melatonin (pineal hormone).After 8 daily injections of 3 mg. serotonin (melatonin precursor).No ultrastructural differences were evident between the control, and the pregnancy and melatonin groups. However, the estradiol injected animals exhibited a marked increase in the amount and size of rough endoplasmic reticulum within the pineal cells.


1975 ◽  
Vol 18 (1) ◽  
pp. 1-17
Author(s):  
A. Pleshkewych ◽  
L. Levine

A prominent cytoplasmic inclusion present in living mouse primary spermatocytes has been observed by both light and electron microscopy. It began to form at prometaphase and continued to increase in thickness and length as the cells developed. By metaphase it was a distinct sausage-shaped boundary that enclosed a portion of the cytoplasm between the spindle and the cell membrane. At the end of metaphase, the inclusion reached its maximum length. At telophase, it was divided between the daughter secondaries. The inclusion persisted as a circular contour in the interphase secondary spermatocyte. Electron microscopy of the same cultured cells that were previously observed with light microscopy revealed that the inclusion was a distinctive formation of membranes. It consisted of agranular cisternae and vesicles, and was therefore a membranous complex. Many of the smaller vesicles in the membranous complex resembled those found in the spindle. The cisternae in the membranous complex were identical to the cisternal endoplasmic reticulum of interphase primary spermatocytes. Nevertheless, the organization of vesicles and cisternae into the membranous complex was unique for the primaries in division stages, since such an organization was not present in their interphase stages.


1982 ◽  
Vol 54 (1) ◽  
pp. 341-355
Author(s):  
M. SEDGLEY

The structure of the watermelon stigma before and after pollination was studied using light and electron microscopy, freeze-fracture and autoradiography. The wall thickenings of the papilla transfer cells contained callose and their presence prior to pollination was confirmed using EM-autoradiography, freeze-fracture and fixation. No further callose thickenings were produced following pollination. Pollination resulted in a rapid increase in aqueous stigma secretion and localized disruption of the cuticle, which appeared to remain on the surface of the secretion. Autolysis of the papilla cells, which had commenced prior to pollination, was accelerated and appeared to take place via cup-shaped vacuoles developed from distended endoplasmic reticulum. The reaction was localized to the papilla cells adjacent to the pollen tube only. Both pollen-grain wall and stigma secretion contained proteins, carbohydrates, acidic polysaccharides, lipids and phenolics.


1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.


1969 ◽  
Vol 17 (7) ◽  
pp. 454-466 ◽  
Author(s):  
EDWARD ESSNER

The peroxidase activity of microbodies in fetal mouse liver was studied by light and electron microscopy. Two types of microbodies were present; a small population of bodies that lacked a nucleoid, predominant on the 16th day of gestation, and a larger population of nucleoid-bearing microbodies, predominant on the 19th day, in association with the rough endoplasmic reticulum from which they probably originate. Both types of bodies were visualized when incubated for peroxidase activity but were negative (19th day) for acid phosphatase activity. The findings suggest that the anucleoid- and nucleoid-bearing organelles together constitute the microbody population of the fetal liver.


Sign in / Sign up

Export Citation Format

Share Document