scholarly journals Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

PLoS Biology ◽  
2017 ◽  
Vol 15 (11) ◽  
pp. e2002810 ◽  
Author(s):  
Thai Q. Tran ◽  
Mari B. Ishak Gabra ◽  
Xazmin H. Lowman ◽  
Ying Yang ◽  
Michael A. Reid ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 453 ◽  
Author(s):  
Sudhir Raghavan ◽  
David S. Baskin ◽  
Martyn A. Sharpe

Various pathways can repair DNA alkylation by chemotherapeutic agents such as temozolomide (TMZ). The enzyme O6-methylguanine methyltransferase (MGMT) removes O6-methylated DNA adducts, leading to the failure of chemotherapy in resistant glioblastomas. Because of the anti-chemotherapeutic activities of MGMT previously described, estimating the levels of active MGMT in cancer cells can be a significant predictor of response to alkylating agents. Current methods to detect MGMT in cells are indirect, complicated, time-intensive, or utilize molecules that require complex and multistep chemistry synthesis. Our design simulates DNA repair by the transfer of a clickable propargyl group from O6-propargyl guanine to active MGMT and subsequent attachment of fluorescein-linked PEG linker via ”click chemistry.” Visualization of active MGMT levels reveals discrete active and inactive MGMT populations with biphasic kinetics for MGMT inactivation in response to TMZ-induced DNA damage.


2021 ◽  
pp. 353-394
Author(s):  
Elena Locci ◽  
Silvia Raymond

In this recent study, DNA data from 900 patients with colorectal cancer were reviewed. Analysis of the data showed a distinct mutation signature, a pattern that had never been identified before but indicated a type of DNA damage called "alkylation." Red meat contains chemicals that can cause alkylation. High levels of tumor alkylation damage are seen only in patients who consume an average of more than 150 grams of meat per day, roughly equivalent to two or more meals. On the other hand, a group of researchers in 2019 in a controversial conclusion stated that they do not have much confidence in reducing deaths from colon cancer by avoiding red meat. Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


2017 ◽  
Author(s):  
Castrese Morrone ◽  
Riccardo Miggiano ◽  
Mario Serpe ◽  
Alberto Massarotti ◽  
Anna Valenti ◽  
...  

The repair of DNA from alkylation damage is generally performed by evolutionary conserved protein complexes. However, specific repair of O6-alkylated-guanines is a task of a small class of proteins called AGTs (alkylated DNA-protein alkyl-transferases): by using a single-step reaction mechanism, the alkylic group is irreversibly transferred to a catalytic cysteine in the active site, inducing the in vitro and in vivo inactivation and destabilization of the protein. Although some conformational changes after the alkylation are supposed, a complete picture of structural rearrangements occurring during the reaction cycle is missing. The complete knowledge of these structural movements is a great challenge and a fundamental task for the development of new inhibitors of the human AGT, whose overexpression leads to a resistance in several types of tumor cells to the chemoterapic alkylating agents-based treatment. We used the Sulfolobus solfataricus thermostable ortholog (SsOGT) as a model for AGTs [1], by performing biochemical, structural, molecular dynamics and in silico analysis of ligand-free, DNA-bound and alkylated version of the protein. With this protein, we were able to highlight conformational changes and perturbations of intramolecular interaction occurring during lesion recognition and catalysis, confirming our previous hypothesis that coordination between the N- and C-terminal domains of SsOGT is important for protein activity and stability [2]. All the data allowed us to propose a general model of structural rearrangements occurring during the reaction cycle of AGTs [3], and proposing it as a starting point to design strategies to modulate AGT activity in therapeutic settings. [1] G. Perugino, A. Vettone, G. Illiano, A. Valenti, M.C. Ferrara, M. Rossi, M. Ciaramella (2012) Activity and regulation of archaeal DNA alkyltransferase: conserved protein involved in repair of DNA alkylation damage. J. Biol. Chem., 287, 4222-4231. [2] G.Perugino, R.Miggiano, M.Serpe, A.Vettone, A.Valenti, S.Lahiri, F.Rossi, M.Rossi, M. Rizzi, M. Ciaramella (2015) Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein. Nucleic Acids Res., 43, 8801-8816. [3] C. Morrone, R. Miggiano, M. Serpe, A. Massarotti, A. Valenti, G. del Monaco, M. Rossi, F. Rossi, M. Rizzi, G. Perugino, M. Ciaramella (2017) Interdomain interactions rearrangements control the reaction steps of a thermostable DNA alkyltransferase. BBA-Gen. Sub., 1861, 2, 86-96.


1985 ◽  
Vol 63 (4) ◽  
pp. 583-588 ◽  
Author(s):  
Takashi Kokunai ◽  
Norihiko Tamaki ◽  
Satoshi Matsumoto

✓ Three ACNU-resistant subclones were isolated and characterized from a wild-typed 9L rat glioma cell line in culture. At an early stage after cloning, these ACNU-resistant subclones showed a high frequency of chromosomal aberrations compared with nonresistant 9L cells. These ACNU-resistant subclones revealed a cross resistance to BCNU, CCNU, methyl CCNU, nitrogen mustard, cyclophosphamide, and cis-platinum, which are alkylating agents. Further studies are necessary to clarify the mechanisms of ACNU-resistance from the aspect of repair of DNA alkylation damage.


2013 ◽  
Vol 42 (5) ◽  
pp. 3089-3103 ◽  
Author(s):  
Meryem Alagoz ◽  
Owen S. Wells ◽  
Sherif F. El-Khamisy

Abstract Base damage and topoisomerase I (Top1)-linked DNA breaks are abundant forms of endogenous DNA breakage, contributing to hereditary ataxia and underlying the cytotoxicity of a wide range of anti-cancer agents. Despite their frequency, the overlapping mechanisms that repair these forms of DNA breakage are largely unknown. Here, we report that depletion of Tyrosyl DNA phosphodiesterase 1 (TDP1) sensitizes human cells to alkylation damage and the additional depletion of apurinic/apyrimidinic endonuclease I (APE1) confers hypersensitivity above that observed for TDP1 or APE1 depletion alone. Quantification of DNA breaks and clonogenic survival assays confirm a role for TDP1 in response to base damage, independently of APE1. The hypersensitivity to alkylation damage is partly restored by depletion of Top1, illustrating that alkylating agents can trigger cytotoxic Top1-breaks. Although inhibition of PARP activity does not sensitize TDP1-deficient cells to Top1 poisons, it confers increased sensitivity to alkylation damage, highlighting partially overlapping roles for PARP and TDP1 in response to genotoxic challenge. Finally, we demonstrate that cancer cells in which TDP1 is inherently deficient are hypersensitive to alkylation damage and that TDP1 depletion sensitizes glioblastoma-resistant cancer cells to the alkylating agent temozolomide.


2017 ◽  
Author(s):  
Castrese Morrone ◽  
Riccardo Miggiano ◽  
Mario Serpe ◽  
Alberto Massarotti ◽  
Anna Valenti ◽  
...  

The repair of DNA from alkylation damage is generally performed by evolutionary conserved protein complexes. However, specific repair of O6-alkylated-guanines is a task of a small class of proteins called AGTs (alkylated DNA-protein alkyl-transferases): by using a single-step reaction mechanism, the alkylic group is irreversibly transferred to a catalytic cysteine in the active site, inducing the in vitro and in vivo inactivation and destabilization of the protein. Although some conformational changes after the alkylation are supposed, a complete picture of structural rearrangements occurring during the reaction cycle is missing. The complete knowledge of these structural movements is a great challenge and a fundamental task for the development of new inhibitors of the human AGT, whose overexpression leads to a resistance in several types of tumor cells to the chemoterapic alkylating agents-based treatment. We used the Sulfolobus solfataricus thermostable ortholog (SsOGT) as a model for AGTs [1], by performing biochemical, structural, molecular dynamics and in silico analysis of ligand-free, DNA-bound and alkylated version of the protein. With this protein, we were able to highlight conformational changes and perturbations of intramolecular interaction occurring during lesion recognition and catalysis, confirming our previous hypothesis that coordination between the N- and C-terminal domains of SsOGT is important for protein activity and stability [2]. All the data allowed us to propose a general model of structural rearrangements occurring during the reaction cycle of AGTs [3], and proposing it as a starting point to design strategies to modulate AGT activity in therapeutic settings. [1] G. Perugino, A. Vettone, G. Illiano, A. Valenti, M.C. Ferrara, M. Rossi, M. Ciaramella (2012) Activity and regulation of archaeal DNA alkyltransferase: conserved protein involved in repair of DNA alkylation damage. J. Biol. Chem., 287, 4222-4231. [2] G.Perugino, R.Miggiano, M.Serpe, A.Vettone, A.Valenti, S.Lahiri, F.Rossi, M.Rossi, M. Rizzi, M. Ciaramella (2015) Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein. Nucleic Acids Res., 43, 8801-8816. [3] C. Morrone, R. Miggiano, M. Serpe, A. Massarotti, A. Valenti, G. del Monaco, M. Rossi, F. Rossi, M. Rizzi, G. Perugino, M. Ciaramella (2017) Interdomain interactions rearrangements control the reaction steps of a thermostable DNA alkyltransferase. BBA-Gen. Sub., 1861, 2, 86-96.


2018 ◽  
Vol 50 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Silvana Rošić ◽  
Rachel Amouroux ◽  
Cristina E. Requena ◽  
Ana Gomes ◽  
Max Emperle ◽  
...  

ChemInform ◽  
2006 ◽  
Vol 37 (20) ◽  
Author(s):  
Yukiko Mishina ◽  
Erica M. Duguid ◽  
Chuan He

2018 ◽  
Vol 115 (28) ◽  
pp. E6516-E6525 ◽  
Author(s):  
Stephan Uphoff

Evolutionary processes are driven by diverse molecular mechanisms that act in the creation and prevention of mutations. It remains unclear how these mechanisms are regulated because limitations of existing mutation assays have precluded measuring how mutation rates vary over time in single cells. Toward this goal, I detected nascent DNA mismatches as a proxy for mutagenesis and simultaneously followed gene expression dynamics in single Escherichia coli cells using microfluidics. This general microscopy-based approach revealed the real-time dynamics of mutagenesis in response to DNA alkylation damage and antibiotic treatments. It also enabled relating the creation of DNA mismatches to the chronology of the underlying molecular processes. By avoiding population averaging, I discovered cell-to-cell variation in mutagenesis that correlated with heterogeneity in the expression of alternative responses to DNA damage. Pulses of mutagenesis are shown to arise from transient DNA repair deficiency. Constitutive expression of DNA repair pathways and induction of damage tolerance by the SOS response compensate for delays in the activation of inducible DNA repair mechanisms, together providing robustness against the toxic and mutagenic effects of DNA alkylation damage.


Sign in / Sign up

Export Citation Format

Share Document