scholarly journals Poststroke dendritic arbor regrowth requires the actin nucleator Cobl

PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001399
Author(s):  
Yuanyuan Ji ◽  
Dennis Koch ◽  
Jule González Delgado ◽  
Madlen Günther ◽  
Otto W. Witte ◽  
...  

Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair.

2021 ◽  
Author(s):  
Yuanyuan Ji ◽  
Dennis Koch ◽  
Jule González Delgado ◽  
Madlen Günther ◽  
Otto W. Witte ◽  
...  

AbstractIschemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in post-stroke dendritic arbor repair in peri-infarct areas. In Cobl KO mice, the dendritic repair window determined to span day 2-4 post-stroke in WT strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful post-stroke recovery process and identified causal molecular mechanisms critical during post-stroke repair.


2020 ◽  
Vol 25 (45) ◽  
pp. 4763-4770
Author(s):  
Angel Cespedes ◽  
Mario Villa ◽  
Irene Benito-Cuesta ◽  
Maria J. Perez-Alvarez ◽  
Lara Ordoñez ◽  
...  

: Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow. : The present review aims to analyze to what extent the lack of each of the elements of the system leads to damage and which mechanisms are unaffected by this deficiency. We believe that the specific analysis of the effect of lack of each component could lead to the emergence of new therapeutic targets for this important brain pathology.


2018 ◽  
Vol 17 (4) ◽  
pp. 299-308 ◽  
Author(s):  
Bogdan Catalin ◽  
Otilia-Constantina Rogoveanu ◽  
Ionica Pirici ◽  
Tudor Adrian Balseanu ◽  
Adina Stan ◽  
...  

Background: Edema represents one of the earliest negative markers of survival and consecutive neurological deficit following stroke. The mixture of cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema, which leaves parenteral administration of a hypertonic solution as the only non-surgical alternative. Objective: New insights into water metabolism in the brain have opened the way for molecular targeted treatment, with aquaporin 4 channels (AQP4) taking center stage. We aimed here to assess the effect of inhibiting AQP4 together with the administration of a neurotropic factor (Cerebrolysin) in ischemic stroke. Methods: Using a permanent medial cerebral artery occlusion rat model, we administrated a single dose of the AQP4 inhibitor TGN-020 (100 mg/kg) at 15 minutes after ischemia followed by daily Cerebrolysin dosing (5ml/kg) for seven days. Rotarod motor testing and neuropathology examinations were next performed. Results: We showed first that the combination treatment animals have a better motor function preservation at seven days after permanent ischemia. We have also identified distinct cellular contributions that represent the bases of behavior testing, such as less astrocyte scarring and a larger neuronalsurvival phenotype rate in animals treated with both compounds than in animals treated with Cerebrolysin alone or untreated animals. Conclusion: Our data show that water diffusion inhibition and Cerebrolysin administration after focal ischemic stroke reduces infarct size, leading to a higher neuronal survival in the peri-core glial scar region.


Author(s):  
Yong-Ming Zhu ◽  
Liang Lin ◽  
Chao Wei ◽  
Yi Guo ◽  
Yuan Qin ◽  
...  

AbstractNecroptosis initiation relies on the receptor-interacting protein 1 kinase (RIP1K). We recently reported that genetic and pharmacological inhibition of RIP1K produces protection against ischemic stroke-induced astrocytic injury. However, the role of RIP1K in ischemic stroke-induced formation of astrogliosis and glial scar remains unknown. Here, in a transient middle cerebral artery occlusion (tMCAO) rat model and an oxygen and glucose deprivation and reoxygenation (OGD/Re)-induced astrocytic injury model, we show that RIP1K was significantly elevated in the reactive astrocytes. Knockdown of RIP1K or delayed administration of RIP1K inhibitor Nec-1 down-regulated the glial scar markers, improved ischemic stroke-induced necrotic morphology and neurologic deficits, and reduced the volume of brain atrophy. Moreover, knockdown of RIP1K attenuated astrocytic cell death and proliferation and promoted neuronal axonal generation in a neuron and astrocyte co-culture system. Both vascular endothelial growth factor D (VEGF-D) and its receptor VEGFR-3 were elevated in the reactive astrocytes; simultaneously, VEGF-D was increased in the medium of astrocytes exposed to OGD/Re. Knockdown of RIP1K down-regulated VEGF-D gene and protein levels in the reactive astrocytes. Treatment with 400 ng/ml recombinant VEGF-D induced the formation of glial scar; conversely, the inhibitor of VEGFR-3 suppressed OGD/Re-induced glial scar formation. RIP3K and MLKL may be involved in glial scar formation. Taken together, these results suggest that RIP1K participates in the formation of astrogliosis and glial scar via impairment of normal astrocyte responses and enhancing the astrocytic VEGF-D/VEGFR-3 signaling pathways. Inhibition of RIP1K promotes the brain functional recovery partially via suppressing the formation of astrogliosis and glial scar. Graphical Abstract


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Adrien Cogo ◽  
Gabrielle Mangin ◽  
Benjamin Maïer ◽  
Jacques Callebert ◽  
Mikael Mazighi ◽  
...  

Abstract Background Strokes are becoming less severe due to increased numbers of intensive care units and improved treatments. As patients survive longer, post-stroke cognitive impairment (PSCI) has become a major health public issue. Diabetes has been identified as an independent predictive factor for PSCI. Here, we characterized a clinically relevant mouse model of PSCI, induced by permanent cerebral artery occlusion in diabetic mice, and investigated whether a reliable biomarker of PSCI may emerge from the kynurenine pathway which has been linked to inflammatory processes. Methods Cortical infarct was induced by permanent middle cerebral artery occlusion in male diabetic mice (streptozotocin IP). Six weeks later, cognitive assessment was performed using the Barnes maze, hippocampi long-term potentiation using microelectrodes array recordings, and neuronal death, white matter rarefaction and microglia/macrophages density assessed in both hemispheres using imunohistochemistry. Brain and serum metabolites of the kynurenin pathway were measured using HPLC and mass fragmentography. At last, these same metabolites were measured in the patient’s serum, at the acute phase of stroke, to determine if they could predict PSCI 3 months later. Results We found long-term spatial memory was impaired in diabetic mice 6 weeks after stroke induction. Synaptic plasticity was completely suppressed in both hippocampi along with increased neuronal death, white matter rarefaction in both striatum, and increased microglial/macrophage density in the ipsilateral hemisphere. Brain and serum quinolinic acid concentrations and quinolinic acid over kynurenic acid ratios were significantly increased compared to control, diabetic and non-diabetic ischemic mice, where PSCI was absent. These putative serum biomarkers were strongly correlated with degradation of long-term memory, neuronal death, microglia/macrophage infiltration and white matter rarefaction. Moreover, we identified these same serum biomarkers as potential predictors of PSCI in a pilot study of stroke patients. Conclusions we have established and characterized a new model of PSCI, functionally and structurally, and we have shown that the QUIN/KYNA ratio could be used as a surrogate biomarker of PSCI, which may now be tested in large prospective studies of stroke patients.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alexander Akhmedov ◽  
Remo D Spescha ◽  
Francesco Paneni ◽  
Giovani G Camici ◽  
Thomas F Luescher

Background— Stroke is one of the most common causes of death and long term disability worldwide primarily affecting the elderly population. Lectin-like oxidized LDL receptor 1 (LOX-1) is the receptor for oxidized LDL identified in endothelial cells. Binding of OxLDL to LOX-1 induces several cellular events in endothelial cells, such as activation of transcription factor NF-kB, upregulation of MCP-1, and reduction in intracellular NO. Accumulating evidence suggests that LOX-1 is involved in endothelial dysfunction, inflammation, atherogenesis, myocardial infarction, and intimal thickening after balloon catheter injury. Interestingly, a recent study demonstrated that acetylsalicylic acid (aspirin), which could prevent ischemic stroke, inhibited Ox-LDL-mediated LOX-1 expression in human coronary endothelial cells. The expression of LOX-1 was increased at a transient ischemic core site in the rat middle cerebral artery occlusion model. These data suggest that LOX-1 expression induces atherosclerosis in the brain and is the precipitating cause of ischemic stroke. Therefore, the goal of the present study was to investigate the role of endothelial LOX-1 in stroke using experimental mouse model. Methods and Results— 12-week-old male LOX-1TG generated recently in our group and wild-type (WT) mice were applied for a transient middle cerebral artery occlusion (MCAO) model to induce ischemia/reperfusion (I/R) brain injury. LOX-1TG mice developed 24h post-MCAO significantly larger infarcts in the brain compared to WT (81.51±8.84 vs. 46.41±10.13, n=7, p < 0.05) as assessed morphologically using Triphenyltetrazolium chloride (TTC) staining. Moreover, LOX-1TG showed higher neurological deficit in RotaRod (35.57±8.92 vs. 66.14±10.63, n=7, p < 0.05) and Bederson tests (2.22±0.14 vs. 1.25±0.30, n=9-12, p < 0.05) - two experimental physiological tests for neurological function. Conclusions— Thus, our data suggest that LOX-1 plays a critical role in the ischemic stroke when expressed at unphysiological levels. Such LOX-1 -associated phenotype could be due to the endothelial dysfunction. Therefore, LOX-1 may represent novel therapeutic targets for preventing ischemic stroke.


2017 ◽  
Vol 37 (3) ◽  
pp. 755-761 ◽  
Author(s):  
Jewel Ahmed ◽  
Dominic M Dwyer ◽  
Tracy D Farr ◽  
David J Harrison ◽  
Stephen B Dunnett ◽  
...  

The need for sensitive, easy to administer assessments of long-term functional deficits is crucial in pre-clinical stroke research. In the present study, we introduce lickometry (lick microstructure analysis) as a precise method to assess sensorimotor deficits up to 40 days after middle cerebral artery occlusion in rats. Impairments in drinking efficiency compared to controls, and a compensatory increase in the number of drinking clusters were observed. This highlights the utility of this easy to administer task in assessing subtle, long-term deficits, which could be likened to oral deficits in patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chujun Zhang ◽  
Sai Zhang ◽  
Lanxiang Wang ◽  
Soyeon Kang ◽  
Jiabao Ma ◽  
...  

Panax notoginseng saponins (PNS), the main bioactive constituents of a traditional Chinese herb Panax notoginseng, were commonly used for ischemic stroke in China. However, the associated cellular and molecular mechanisms of PNS have not been well examined. This study aimed to decipher the underlying molecular target of PNS in the treatment of cerebral ischemia. The oxygen-glucose-deprived (OGD) model of rat brain microvascular endothelial cells (BMECs) was used in this study. The alteration of gene expression in rat BMECs after PNS treatment was measured by microarray and indicated that there were 38 signaling pathways regulated by PNS. Among them, RIG-I receptor and related signaling molecules TNF receptor-associated factor 2 (Traf2) and nuclear factor-kappa B (NF-κB) were significantly suppressed by PNS, which was verified again in OGD-induced BMECs measured by FQ-PCR and western blotting and in middle cerebral artery occlusion (MCAO) rats measured by immunohistochemistry. The levels of TNF-α, IL-8, and the downstream cytokines regulated by RIG-I receptor pathway were also decreased by PNS. Meanwhile, the neurological evaluation, hematoxylin and eosin (HE) staining, and Evans blue staining were conducted to evaluate the effect of PNS in MCAO rats. Results showed PNS significantly improved functional outcome and cerebral vascular leakage. Flow cytometry showed the number of the inflammatory cells infiltrated in brain tissue was decreased in PNS treatment. Our results identified that RIG-I signaling pathway mediated anti-inflammatory properties of PNS in cerebral ischemia, which provided the novel insights of PNS application in clinics.


2021 ◽  
Author(s):  
Mitch Paro ◽  
Daylin Gamiotea Turro ◽  
Leslie Blumenfeld ◽  
Ketan R Bulsara ◽  
Rajkumar Verma

Background and Purpose: No effective treatment is available for most patients who suffer ischemic stroke. Development of novel treatment options is imperative. The brain attempts to self-heal after ischemic stroke via various mechanism mediated by restored blood circulation in affected region of brain but this process is limited by inadequate angiogenesis or neoangiogenesis. Encephalomyosynangiosis (EMS) is a neurosurgical procedure that achieves angiogenesis with low morbidity in patients with moyamoya disease, reducing risk of stroke. However, EMS, surgery has never been studied as an therapeutic option after ischemic stroke. Here we described a novel procedure and feasibility data for EMS after ischemic stroke in mice. Methods: A 60 mins of middle cerebral artery occlusion (MCAo) was used to induce ischemic stroke in mice. After 3-4 hours of MCAo onset/sham, EMS was performed. Mortality of EMS, MCAo and. MCAo+EMS mice was recorded up to 21 days after surgery. Graft tissue viability was measured using a nicotinamide adenine dinucleotide reduced tetrazolium reductase assay. Results: EMS surgery after ischemic stroke does not increase mortality compared to stroke alone. Graft muscle tissue remained viable 21 days after surgery. Conclusions: This novel protocol is effective and well-tolerated, may serve as novel platform for new angiogenesis and thus recovery after ischemic stroke. If successful in mice, EMS can a very feasible and novel treatment option for ischemic stroke in humans.


Sign in / Sign up

Export Citation Format

Share Document