scholarly journals The Plasmodium NOT1-G paralogue is an essential regulator of sexual stage maturation and parasite transmission

PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001434
Author(s):  
Kevin J. Hart ◽  
B. Joanne Power ◽  
Kelly T. Rios ◽  
Aswathy Sebastian ◽  
Scott E. Lindner

Productive transmission of malaria parasites hinges upon the execution of key transcriptional and posttranscriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here, we show that in Plasmodium parasites, the NOT1 scaffold protein of the CAF1/CCR4/Not complex is duplicated, and one paralogue is dedicated for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g− parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin (TTP)-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-G’s essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that a NOT1-G paralogue in Plasmodium fulfills the complex transmission requirements of both male and female parasites.

2021 ◽  
Author(s):  
Kevin J. Hart ◽  
Bridget Joanne Power ◽  
Kelly T. Rios ◽  
Aswathy Sebastian ◽  
Scott E Lindner

Productive transmission of malaria parasites hinges upon the execution of key transcriptional and post-transcriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here we show that Plasmodium parasites have taken the unique approach to duplicate the NOT1 scaffold protein of the CAF1/CCR4/Not complex in order to dedicate one paralogue for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g- parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis, and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-Gs essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that Plasmodium has created and adapted a NOT1-G paralogue to fulfill the complex transmission requirements of both male and female parasites.


2016 ◽  
Vol 84 (5) ◽  
pp. 1336-1345 ◽  
Author(s):  
Dorender A. Dankwa ◽  
Marshall J. Davis ◽  
Stefan H. I. Kappe ◽  
Ashley M. Vaughan

Plasmodiumparasites employ posttranscriptional regulatory mechanisms as their life cycle transitions between host cell invasion and replication within both the mosquito vector and mammalian host. RNA binding proteins (RBPs) provide one mechanism for modulation of RNA function. To explore the role ofPlasmodiumRBPs during parasite replication, we searched for RBPs that might play a role during liver stage development, the parasite stage that exhibits the most extensive growth and replication. We identified a parasite ortholog of theMei2(Meiosisinhibited 2) RBP that is conserved amongPlasmodiumspecies (PlasMei2) and exclusively transcribed in liver stage parasites. Epitope-taggedPlasmodium yoeliiPlasMei2 was expressed only during liver stage schizogony and showed an apparent granular cytoplasmic location. Knockout ofPlasMei2(plasmei2−) inP. yoeliionly affected late liver stage development. TheP. yoeliiplasmei2−liver stage size increased progressively until late in development, similar to wild-type parasite development. However,P. yoeliiplasmei2−liver stage schizonts exhibited an abnormal DNA segregation phenotype and failed to form exoerythrocytic merozoites. Consequently the cellular integrity ofP. yoeliiplasmei2−liver stages became increasingly compromised late in development and the majority ofP. yoeliiplasmei2−underwent cell death by the time wild-type liver stages mature and release merozoites. This resulted in a complete block ofP. yoeliiplasmei2−transition from liver stage to blood stage infection in mice. Our results show for the first time the importance of aPlasmodiumRBP in the coordinated progression of late liver stage schizogony and maturation of new invasive forms.


2013 ◽  
Vol 57 (7) ◽  
pp. 3268-3274 ◽  
Author(s):  
Michael J. Delves ◽  
Andrea Ruecker ◽  
Ursula Straschil ◽  
Jöel Lelièvre ◽  
Sara Marques ◽  
...  

ABSTRACTIt is the mature gametocytes ofPlasmodiumthat are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes ofPlasmodium falciparum. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC50s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio ofPlasmodium falciparum(∼3 to 5 females:1 male), current gametocyte assays without a sex-specific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163791 ◽  
Author(s):  
Heba F. Alzan ◽  
Audrey O. T. Lau ◽  
Donald P. Knowles ◽  
David R. Herndon ◽  
Massaro W. Ueti ◽  
...  

2018 ◽  
Vol 75 (6) ◽  
pp. 1042-1049
Author(s):  
Seongjoon Park ◽  
Erkhembayar Nayantai ◽  
Toshimitsu Komatsu ◽  
Hiroko Hayashi ◽  
Ryoichi Mori ◽  
...  

Abstract The orexigenic hormone neuropeptide Y (NPY) plays a pivotal role in the peripheral regulation of fat metabolism. However, the mechanisms underlying the effects of sex on NPY function have not been extensively analyzed. In this study, we examined the effects of NPY deficiency on fat metabolism in male and female mice. Body weight was slightly decreased, whereas white adipose tissue (WAT) mass was significantly decreased as the thermogenic program was upregulated in NPY-/- female mice compared with that in wild-type mice; these factors were not altered in response to NPY deficiency in male mice. Moreover, lack of NPY resulted in an increase in luteinizing hormone (LH) expression in the pituitary gland, with concomitant activation of the estradiol-mediated thermogenic program in inguinal WAT, and alleviated age-related modification of adiposity in female mice. Taken together, these data revealed a novel intracellular mechanism of NPY in the regulation of fat metabolism and highlighted the sexual dimorphism of NPY as a promising target for drug development to reduce postmenopausal adiposity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Cesar Sierra ◽  
Ilario De Toma ◽  
Lorenzo Lo Cascio ◽  
Esteban Vegas ◽  
Mara Dierssen

The use of mouse models has revolutionized the field of Down syndrome (DS), increasing our knowledge about neuropathology and helping to propose new therapies for cognitive impairment. However, concerns about the reproducibility of results in mice and their translatability to humans have become a major issue, and controlling for moderators of behavior is essential. Social and environmental factors, the experience of the researcher, and the sex and strain of the animals can all have effects on behavior, and their impact on DS mouse models has not been explored. Here we analyzed the influence of a number of social and environmental factors, usually not taken into consideration, on the behavior of male and female wild-type and trisomic mice (the Ts65Dn model) in one of the most used tests for proving drug effects on memory, the novel object recognition (NOR) test. Using principal component analysis and correlation matrices, we show that the ratio of trisomic mice in the cage, the experience of the experimenter, and the timing of the test have a differential impact on male and female and on wild-type and trisomic behavior. We conclude that although the NOR test is quite robust and less susceptible to environmental influences than expected, to obtain useful results, the phenotype expression must be contrasted against the influences of social and environmental factors.


2021 ◽  
Author(s):  
Anna Vazquez-Oliver ◽  
Silvia Perez-Garcia ◽  
Nieves Pizarro ◽  
Laura Molina-Porcel ◽  
Rafael de la Torre ◽  
...  

Intellectual disability is the most prevalent and limiting hallmark of Down syndrome (DS), without any pharmacological treatment available. Neurodegeneration and neuroinflammation are relevant neurological features of DS reaching to early development of Alzheimer s disease. Preclinical evidence suggests that the endocannabinoid system, an important neuromodulator on cognition and neuroinflammation, could act as beneficial target in DS. Indeed, cannabinoid type-1 receptor (CB1R) activity was enhanced in the hippocampus of young-adult trisomic Ts65Dn mice, a well-characterized surrogate model of DS. In previous studies, inhibition of CB1R, was able to restore key neurological deficits in this mouse model. To determine the possible clinical relevance of this target, it is mandatory to evaluate the long-term consequences of attenuated CB1R activity and to minimize the possible side-effects associated to this mechanism. We found that CB1R expression was significantly enhanced in the hippocampus brains of aged DS subjects. Similarly, middle-aged trisomic mice showed enhanced CB1R expression. Long-term oral administration of a low dose of the CB1R specific antagonist rimonabant was administered to male and female Ts65Dn trisomic and wild-type mice from the time of weaning to 10 months, an age when signs of neurodegeneration have been described in the model. CB1R inhibition resulted in significant cognitive improvement in novel object-recognition memory in trisomic male and female mice, reaching a similar performance to that of wild-type littermates. Interestingly, this long-term rimonabant treatment modify locomotor activity, anxiety-like behavior, body weight or survival rates. Brain analysis at 10 months of age revealed noradrenergic and cholinergic neurodegeneration signs in trisomic mice that were not modified by the treatment, although the alterations in hippocampal microglia morphology shown by vehicle-treated trisomic mice was normalized in trisomic mice exposed to rimonabant. Altogether, our results demonstrate a sustained pro-cognitive effect of CB1R inhibition at doses that do not produce major side effects that could be associated to an anti-inflammatory action, suggesting a potential interest in this target of to preserve cognitive functionality in DS.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Viswanathan Lakshmanan ◽  
Matthew E. Fishbaugher ◽  
Bob Morrison ◽  
Michael Baldwin ◽  
Michael Macarulay ◽  
...  

ABSTRACT Transmission of malaria occurs during Anopheles mosquito vector blood meals, when Plasmodium sporozoites that have invaded the mosquito salivary glands are delivered to the mammalian host. Sporozoites display a unique form of motility that is essential for their movement across cellular host barriers and invasion of hepatocytes. While the molecular machinery powering motility and invasion is increasingly well defined, the signaling events that control these essential parasite activities have not been clearly delineated. Here, we identify a phosphodiesterase (PDEγ) in Plasmodium, a regulator of signaling through cyclic nucleotide second messengers. Reverse transcriptase PCR (RT-PCR) analysis and epitope tagging of endogenous PDEγ detected its expression in blood stages and sporozoites of Plasmodium yoelii. Deletion of PDEγ (pdeγ−) rendered sporozoites nonmotile, and they failed to invade the mosquito salivary glands. Consequently, PDEγ deletion completely blocked parasite transmission by mosquito bite. Strikingly, pdeγ− sporozoites showed dramatically elevated levels of cyclic GMP (cGMP), indicating that a perturbation in cyclic nucleotide balance is involved in the observed phenotypic defects. Transcriptome sequencing (RNA-Seq) analysis of pdeγ− sporozoites revealed reduced transcript abundance of genes that encode key components of the motility and invasion apparatus. Our data reveal a crucial role for PDEγ in maintaining the cyclic nucleotide balance in the malaria parasite sporozoite stage, which in turn is essential for parasite transmission from mosquito to mammal. IMPORTANCE Malaria is a formidable threat to human health worldwide, and there is an urgent need to identify novel drug targets for this parasitic disease. The parasite is transmitted by mosquito bite, inoculating the host with infectious sporozoite stages. We show that cellular signaling by cyclic nucleotides is critical for transmission of the parasite from the mosquito vector to the mammalian host. Parasite phosphodiesterase γ is essential for maintaining cyclic nucleotide balance, and its deletion blocks transmission of sporozoites. A deeper understanding of the signaling mechanisms involved in transmission might inform the discovery of novel drugs that interrupt this essential step in the parasite life cycle.


2018 ◽  
Vol 2 (S1) ◽  
pp. 27-27
Author(s):  
Zheying Chen ◽  
Alan Daugherty ◽  
Mary Sheppard

OBJECTIVES/SPECIFIC AIMS: Pre-clinical and clinical observations have noted that increased aortic dilation is associated with male sex. Using an experimental model of severe, syndromic thoracic aortic aneurysms, we quantify aortic dilation and elastin stability in male Versus female mice. METHODS/STUDY POPULATION: Ascending aortas from male and female FBN1mgR/mgR mice and their wild type littermates were assessed every 4 weeks from 6 to 18 weeks of age by ultrasound. Measurements were taken luminal edge to luminal edge in diastole. At termination, aortas were harvested for RT-PCR analysis of extracellular matrix genes. Aortas were serially sectioned and elastin fragmentation was imaged by auto-fluorescence. RESULTS/ANTICIPATED RESULTS: At 12 weeks of age, differences of aortic diameters between male and female FBN1mgR/mgR mice were significantly different (2.24±0.43 vs. 1.57±0.22 mm; p=0.002), while there were no significant differences between sexes of wild type littermates (1.29±0.13 vs. 1.23±0.08 mm; p=0.71). Male sex was associated with increased elastin but not fibrillin-1 mRNA expression. Ascending aortas from male and female FBN1mgR/mgR mice significantly differed in the degree of elastin fragmentation (2.76 vs. 1.85 breaks/ 100 µm aorta; p=0.03). DISCUSSION/SIGNIFICANCE OF IMPACT: Sexual dimorphism of thoracic aortic dilation observed in human TAA patients was recapitulated in the fibirllin-1 hypomorphic mouse model of syndromic thoracic aortic aneurysms. Differences in this mouse model could be explained by the differential expression of extracellular matrix genes.


Sign in / Sign up

Export Citation Format

Share Document