scholarly journals A Human-Specific De Novo Protein-Coding Gene Associated with Human Brain Functions

2010 ◽  
Vol 6 (3) ◽  
pp. e1000734 ◽  
Author(s):  
Chuan-Yun Li ◽  
Yong Zhang ◽  
Zhanbo Wang ◽  
Yan Zhang ◽  
Chunmei Cao ◽  
...  
2020 ◽  
Vol 37 (9) ◽  
pp. 2531-2548
Author(s):  
Gerrald A Lodewijk ◽  
Diana P Fernandes ◽  
Iraklis Vretzakis ◽  
Jeanne E Savage ◽  
Frank M J Jacobs

Abstract Ever since the availability of genomes from Neanderthals, Denisovans, and ancient humans, the field of evolutionary genomics has been searching for protein-coding variants that may hold clues to how our species evolved over the last ∼600,000 years. In this study, we identify such variants in the human-specific NOTCH2NL gene family, which were recently identified as possible contributors to the evolutionary expansion of the human brain. We find evidence for the existence of unique protein-coding NOTCH2NL variants in Neanderthals and Denisovans which could affect their ability to activate Notch signaling. Furthermore, in the Neanderthal and Denisovan genomes, we find unusual NOTCH2NL configurations, not found in any of the modern human genomes analyzed. Finally, genetic analysis of archaic and modern humans reveals ongoing adaptive evolution of modern human NOTCH2NL genes, identifying three structural variants acting complementary to drive our genome to produce a lower dosage of NOTCH2NL protein. Because copy-number variations of the 1q21.1 locus, encompassing NOTCH2NL genes, are associated with severe neurological disorders, this seemingly contradicting drive toward low levels of NOTCH2NL protein indicates that the optimal dosage of NOTCH2NL may have not yet been settled in the human population.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongbo Chen ◽  
◽  
David Zhang ◽  
Regina H. Reynolds ◽  
Emil K. Gustavsson ◽  
...  

AbstractKnowledge of genomic features specific to the human lineage may provide insights into brain-related diseases. We leverage high-depth whole genome sequencing data to generate a combined annotation identifying regions simultaneously depleted for genetic variation (constrained regions) and poorly conserved across primates. We propose that these constrained, non-conserved regions (CNCRs) have been subject to human-specific purifying selection and are enriched for brain-specific elements. We find that CNCRs are depleted from protein-coding genes but enriched within lncRNAs. We demonstrate that per-SNP heritability of a range of brain-relevant phenotypes are enriched within CNCRs. We find that genes implicated in neurological diseases have high CNCR density, including APOE, highlighting an unannotated intron-3 retention event. Using human brain RNA-sequencing data, we show the intron-3-retaining transcript to be more abundant in Alzheimer’s disease with more severe tau and amyloid pathological burden. Thus, we demonstrate potential association of human-lineage-specific sequences in brain development and neurological disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ammar Zaghlool ◽  
Adnan Niazi ◽  
Åsa K. Björklund ◽  
Jakub Orzechowski Westholm ◽  
Adam Ameur ◽  
...  

AbstractTranscriptome analysis has mainly relied on analyzing RNA sequencing data from whole cells, overlooking the impact of subcellular RNA localization and its influence on our understanding of gene function, and interpretation of gene expression signatures in cells. Here, we separated cytosolic and nuclear RNA from human fetal and adult brain samples and performed a comprehensive analysis of cytosolic and nuclear transcriptomes. There are significant differences in RNA expression for protein-coding and lncRNA genes between cytosol and nucleus. We show that transcripts encoding the nuclear-encoded mitochondrial proteins are significantly enriched in the cytosol compared to the rest of protein-coding genes. Differential expression analysis between fetal and adult frontal cortex show that results obtained from the cytosolic RNA differ from results using nuclear RNA both at the level of transcript types and the number of differentially expressed genes. Our data provide a resource for the subcellular localization of thousands of RNA transcripts in the human brain and highlight differences in using the cytosolic or the nuclear transcriptomes for expression analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Alexandre Bueno Santos ◽  
Patrícia Silva Costa ◽  
Anderson Oliveira do Carmo ◽  
Gabriel da Rocha Fernandes ◽  
Larissa Lopes Silva Scholte ◽  
...  

Members of the genusChromobacteriumhave been isolated from geographically diverse ecosystems and exhibit considerable metabolic flexibility, as well as biotechnological and pathogenic properties in some species. This study reports the draft assembly and detailed sequence analysis ofChromobacterium amazonensestrain 56AF. The de novo-assembled genome is 4,556,707 bp in size and contains 4294 protein-coding and 95 RNA genes, including 88 tRNA, six rRNA, and one tmRNA operon. A repertoire of genes implicated in virulence, for example, hemolysin, hemolytic enterotoxins, colicin V, lytic proteins, and Nudix hydrolases, is present. The genome also contains a collection of genes of biotechnological interest, including esterases, lipase, auxins, chitinases, phytoene synthase and phytoene desaturase, polyhydroxyalkanoates, violacein, plastocyanin/azurin, and detoxifying compounds. Importantly, unlike otherChromobacteriumspecies, the 56AF genome contains genes for pore-forming toxin alpha-hemolysin, a type IV secretion system, among others. The analysis of theC. amazonensestrain 56AF genome reveals the versatility, adaptability, and biotechnological potential of this bacterium. This study provides molecular information that may pave the way for further comparative genomics and functional studies involvingChromobacterium-related isolates and improves our understanding of the global genomic diversity ofChromobacteriumspecies.


BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Amy Webb ◽  
Audrey C. Papp ◽  
Amanda Curtis ◽  
Leslie C. Newman ◽  
Maciej Pietrzak ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 692
Author(s):  
Sweta Talyan ◽  
Samantha Filipów ◽  
Michael Ignarski ◽  
Magdalena Smieszek ◽  
He Chen ◽  
...  

Diseases of the renal filtration unit—the glomerulus—are the most common cause of chronic kidney disease. Podocytes are the pivotal cell type for the function of this filter and focal-segmental glomerulosclerosis (FSGS) is a classic example of a podocytopathy leading to proteinuria and glomerular scarring. Currently, no targeted treatment of FSGS is available. This lack of therapeutic strategies is explained by a limited understanding of the defects in podocyte cell biology leading to FSGS. To date, most studies in the field have focused on protein-coding genes and their gene products. However, more than 80% of all transcripts produced by mammalian cells are actually non-coding. Here, long non-coding RNAs (lncRNAs) are a relatively novel class of transcripts and have not been systematically studied in FSGS to date. The appropriate tools to facilitate lncRNA research for the renal scientific community are urgently required due to a row of challenges compared to classical analysis pipelines optimized for coding RNA expression analysis. Here, we present the bioinformatic pipeline CALINCA as a solution for this problem. CALINCA automatically analyzes datasets from murine FSGS models and quantifies both annotated and de novo assembled lncRNAs. In addition, the tool provides in-depth information on podocyte specificity of these lncRNAs, as well as evolutionary conservation and expression in human datasets making this pipeline a crucial basis to lncRNA studies in FSGS.


KronoScope ◽  
2013 ◽  
Vol 13 (2) ◽  
pp. 228-239
Author(s):  
Rémy Lestienne

Abstract J.T. Fraser used to emphasize the uniqueness of the human brain in its capacity for apprehending the various dimensions of “nootemporality” (Fraser 1982 and 1987). Indeed, our brain allows us to sense the flow of time, to measure delays, to remember past events or to predict future outcomes. In these achievements, the human brain reveals itself far superior to its animal counterpart. Women and men are the only beings, I believe, who are able to think about what they will do the next day. This is because such a thought implies three intellectual abilities that are proper to mankind: the capacity to take their own thoughts as objects of their thinking, the ability of mental time travels—to the past thanks to their episodic memory or to the future—and the possibility to project very far into the future, as a consequence of their enlarged and complexified forebrain. But there are severe limits to our timing abilities of which we are often unaware. Our sensibility to the passing time, like other of our intellectual abilities, is often competing with other brain functions, because they use at least in part the same neural networks. This is particularly the case regarding attention. The deeper the level of attention required, the looser is our perception of the flow of time. When we pay attention to something, when we fix our attention, then our inner sense of the flux of time freezes. This limitation should not sound too unfamiliar to the reader of J.T. Fraser who wrote in his book Time, Conflict, and Human Values (1999) about “time as a nested hierarchy of unresolvable conflicts.”


Sign in / Sign up

Export Citation Format

Share Document