Non-invasive Studies on Human Brain Functions by using SQUID Gradiometer

1994 ◽  
Vol 34 (5) ◽  
pp. 223-228
Author(s):  
Atsushi NAMBU
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Bingshuo Li ◽  
Juha P Virtanen ◽  
Axel Oeltermann ◽  
Cornelius Schwarz ◽  
Martin A Giese ◽  
...  

Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


KronoScope ◽  
2013 ◽  
Vol 13 (2) ◽  
pp. 228-239
Author(s):  
Rémy Lestienne

Abstract J.T. Fraser used to emphasize the uniqueness of the human brain in its capacity for apprehending the various dimensions of “nootemporality” (Fraser 1982 and 1987). Indeed, our brain allows us to sense the flow of time, to measure delays, to remember past events or to predict future outcomes. In these achievements, the human brain reveals itself far superior to its animal counterpart. Women and men are the only beings, I believe, who are able to think about what they will do the next day. This is because such a thought implies three intellectual abilities that are proper to mankind: the capacity to take their own thoughts as objects of their thinking, the ability of mental time travels—to the past thanks to their episodic memory or to the future—and the possibility to project very far into the future, as a consequence of their enlarged and complexified forebrain. But there are severe limits to our timing abilities of which we are often unaware. Our sensibility to the passing time, like other of our intellectual abilities, is often competing with other brain functions, because they use at least in part the same neural networks. This is particularly the case regarding attention. The deeper the level of attention required, the looser is our perception of the flow of time. When we pay attention to something, when we fix our attention, then our inner sense of the flux of time freezes. This limitation should not sound too unfamiliar to the reader of J.T. Fraser who wrote in his book Time, Conflict, and Human Values (1999) about “time as a nested hierarchy of unresolvable conflicts.”


Brain ◽  
2019 ◽  
Vol 142 (12) ◽  
pp. 3991-4002 ◽  
Author(s):  
Martijn P van den Heuvel ◽  
Lianne H Scholtens ◽  
Siemon C de Lange ◽  
Rory Pijnenburg ◽  
Wiepke Cahn ◽  
...  

See Vértes and Seidlitz (doi:10.1093/brain/awz353) for a scientific commentary on this article. Is schizophrenia a by-product of human brain evolution? By comparing the human and chimpanzee connectomes, van den Heuvel et al. demonstrate that connections unique to the human brain show greater involvement in schizophrenia pathology. Modifications in service of higher-order brain functions may have rendered the brain more vulnerable to dysfunction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad Ali Salehinejad ◽  
Miles Wischnewski ◽  
Elham Ghanavati ◽  
Mohsen Mosayebi-Samani ◽  
Min-Fang Kuo ◽  
...  

AbstractCircadian rhythms have natural relative variations among humans known as chronotype. Chronotype or being a morning or evening person, has a specific physiological, behavioural, and also genetic manifestation. Whether and how chronotype modulates human brain physiology and cognition is, however, not well understood. Here we examine how cortical excitability, neuroplasticity, and cognition are associated with chronotype in early and late chronotype individuals. We monitor motor cortical excitability, brain stimulation-induced neuroplasticity, and examine motor learning and cognitive functions at circadian-preferred and non-preferred times of day in 32 individuals. Motor learning and cognitive performance (working memory, and attention) along with their electrophysiological components are significantly enhanced at the circadian-preferred, compared to the non-preferred time. This outperformance is associated with enhanced cortical excitability (prominent cortical facilitation, diminished cortical inhibition), and long-term potentiation/depression-like plasticity. Our data show convergent findings of how chronotype can modulate human brain functions from basic physiological mechanisms to behaviour and higher-order cognition.


2017 ◽  
pp. 115-186 ◽  
Author(s):  
John C. Ashton ◽  
Megan J. Dowie ◽  
Michelle Glass

2019 ◽  
pp. 141-160
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document