scholarly journals Twelve quick steps for genome assembly and annotation in the classroom

2020 ◽  
Vol 16 (11) ◽  
pp. e1008325
Author(s):  
Hyungtaek Jung ◽  
Tomer Ventura ◽  
J. Sook Chung ◽  
Woo-Jin Kim ◽  
Bo-Hye Nam ◽  
...  

Eukaryotic genome sequencing and de novo assembly, once the exclusive domain of well-funded international consortia, have become increasingly affordable, thus fitting the budgets of individual research groups. Third-generation long-read DNA sequencing technologies are increasingly used, providing extensive genomic toolkits that were once reserved for a few select model organisms. Generating high-quality genome assemblies and annotations for many aquatic species still presents significant challenges due to their large genome sizes, complexity, and high chromosome numbers. Indeed, selecting the most appropriate sequencing and software platforms and annotation pipelines for a new genome project can be daunting because tools often only work in limited contexts. In genomics, generating a high-quality genome assembly/annotation has become an indispensable tool for better understanding the biology of any species. Herein, we state 12 steps to help researchers get started in genome projects by presenting guidelines that are broadly applicable (to any species), sustainable over time, and cover all aspects of genome assembly and annotation projects from start to finish. We review some commonly used approaches, including practical methods to extract high-quality DNA and choices for the best sequencing platforms and library preparations. In addition, we discuss the range of potential bioinformatics pipelines, including structural and functional annotations (e.g., transposable elements and repetitive sequences). This paper also includes information on how to build a wide community for a genome project, the importance of data management, and how to make the data and results Findable, Accessible, Interoperable, and Reusable (FAIR) by submitting them to a public repository and sharing them with the research community.

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 488 ◽  
Author(s):  
Shiyong Zhang ◽  
Jia Li ◽  
Qin Qin ◽  
Wei Liu ◽  
Chao Bian ◽  
...  

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ≈6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


Author(s):  
Valentina Peona ◽  
Mozes P.K. Blom ◽  
Luohao Xu ◽  
Reto Burri ◽  
Shawn Sullivan ◽  
...  

AbstractGenome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies have opened up a whole new world of genomic biodiversity. Although these technologies generate high-quality genome assemblies, there are still genomic regions difficult to assemble, like repetitive elements and GC-rich regions (genomic “dark matter”). In this study, we compare the efficiency of currently used sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter starting from the same sample. By adopting different de-novo assembly strategies, we were able to compare each individual draft assembly to a curated multiplatform one and identify the nature of the previously missing dark matter with a particular focus on transposable elements, multi-copy MHC genes, and GC-rich regions. Thanks to this multiplatform approach, we demonstrate the feasibility of producing a high-quality chromosome-level assembly for a non-model organism (paradise crow) for which only suboptimal samples are available. Our approach was able to reconstruct complex chromosomes like the repeat-rich W sex chromosome and several GC-rich microchromosomes. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects around the completeness of both the coding and non-coding parts of the genomes.


2021 ◽  
Author(s):  
Xinxin Yi ◽  
Jing Liu ◽  
Shengcai Chen ◽  
Hao Wu ◽  
Min Liu ◽  
...  

Cultivated soybean (Glycine max) is an important source for protein and oil. Many elite cultivars with different traits have been developed for different conditions. Each soybean strain has its own genetic diversity, and the availability of more high-quality soybean genomes can enhance comparative genomic analysis for identifying genetic underpinnings for its unique traits. In this study, we constructed a high-quality de novo assembly of an elite soybean cultivar Jidou 17 (JD17) with chromsome contiguity and high accuracy. We annotated 52,840 gene models and reconstructed 74,054 high-quality full-length transcripts. We performed a genome-wide comparative analysis based on the reference genome of JD17 with three published soybeans (WM82, ZH13 and W05) , which identified five large inversions and two large translocations specific to JD17, 20,984 - 46,912 PAVs spanning 13.1 - 46.9 Mb in size, and 5 - 53 large PAV clusters larger than 500kb. 1,695,741 - 3,664,629 SNPs and 446,689 - 800,489 Indels were identified and annotated between JD17 and them. Symbiotic nitrogen fixation (SNF) genes were identified and the effects from these variants were further evaluated. It was found that the coding sequences of 9 nitrogen fixation-related genes were greatly affected. The high-quality genome assembly of JD17 can serve as a valuable reference for soybean functional genomics research.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rashmi Jain ◽  
Jerry Jenkins ◽  
Shengqiang Shu ◽  
Mawsheng Chern ◽  
Joel A. Martin ◽  
...  

Abstract Background The availability of thousands of complete rice genome sequences from diverse varieties and accessions has laid the foundation for in-depth exploration of the rice genome. One drawback to these collections is that most of these rice varieties have long life cycles, and/or low transformation efficiencies, which limits their usefulness as model organisms for functional genomics studies. In contrast, the rice variety Kitaake has a rapid life cycle (9 weeks seed to seed) and is easy to transform and propagate. For these reasons, Kitaake has emerged as a model for studies of diverse monocotyledonous species. Results Here, we report the de novo genome sequencing and analysis of Oryza sativa ssp. japonica variety KitaakeX, a Kitaake plant carrying the rice XA21 immune receptor. Our KitaakeX sequence assembly contains 377.6 Mb, consisting of 33 scaffolds (476 contigs) with a contig N50 of 1.4 Mb. Complementing the assembly are detailed gene annotations of 35,594 protein coding genes. We identified 331,335 genomic variations between KitaakeX and Nipponbare (ssp. japonica), and 2,785,991 variations between KitaakeX and Zhenshan97 (ssp. indica). We also compared Kitaake resequencing reads to the KitaakeX assembly and identified 219 small variations. The high-quality genome of the model rice plant KitaakeX will accelerate rice functional genomics. Conclusions The high quality, de novo assembly of the KitaakeX genome will serve as a useful reference genome for rice and will accelerate functional genomics studies of rice and other species.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


Author(s):  
Xinhai Ye ◽  
Yi Yang ◽  
Zhaoyang Tian ◽  
Le Xu ◽  
Kaili Yu ◽  
...  

AbstractSequencing and assembling a genome with a single individual have several advantages, such as lower heterozygosity and easier sample preparation. However, the amount of genomic DNA of some small sized organisms might not meet the standard DNA input requirement for current sequencing pipelines. Although few studies sequenced a single small insect with about 100 ng DNA as input, it may still be challenging for many small organisms to obtain such amount of DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality genome assembly for a single haploid male parasitoid wasp (Habrobracon hebetor) using Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting the high level of completeness of the genome assembly. Genome comparison between H. hebetor and its relative Bracon brevicornis shows a high-level genome synteny, indicating the genome of H. hebetor is highly accurate and contiguous. Our study provides an example for de novo assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species.


2018 ◽  
Author(s):  
Andrew B. Nuss ◽  
Arvind Sharma ◽  
Monika Gulia-Nuss

AbstractA high-quality genome sequence is essential for understanding an organism on molecular level. However, the larger genomes with substantial repetitive sequences are challenging to assemble with the sequencing technologies. Hi-C technique is changing the genome architecture landscape by providing links across a variety of length scales, spanning even whole chromosomes. Ixodes scapularis haploid genome is 2.1 gbp and the current assembly consists of 369,495 scaffolds representing 57% of the genome. The fragmented genome poses challenges with functional gene analysis and an improved assembly is needed. We therefore used the Hi C technique to achieve chromosomal level assembly of tick genome. With Chicago and Dovetail Hi C assemblies, we were able to achieve 28 >10Mb sequences that correspond to 28 chromosomes in I. scapularis.


2020 ◽  
Author(s):  
Zeyuan Chen ◽  
Özgül Doğan ◽  
Nadège Guiglielmoni ◽  
Anne Guichard ◽  
Michael Schrödl

AbstractBackgroundThe “Spanish” slug, Arion vulgaris Moquin-Tandon, 1855, is considered to be among the 100 worst pest species in Europe. It is common and invasive to at least northern and eastern parts of Europe, probably benefitting from climate change and the modern human lifestyle. The origin and expansion of this species, the mechanisms behind its outstanding adaptive success and ability to outcompete other land slugs are worth to be explored on a genomic level. However, a high-quality chromosome-level genome is still lacking.FindingsThe final assembly of A. vulgaris was obtained by combining short reads, linked reads, Nanopore long reads, and Hi-C data. The genome assembly size is 1.54 Gb with a contig N50 length of 8.6 Mb. We found a recent expansion of transposable elements (TEs) which results in repetitive sequences accounting for more than 75% of the A. vulgaris genome, which is the highest among all known gastropod species. We identified 32,518 protein coding genes, and 2,763 species specific genes were functionally enriched in response to stimuli, nervous system and reproduction. With 1,237 single-copy orthologs from A. vulgaris and other related mollusks with whole-genome data available, we reconstructed the phylogenetic relationships of gastropods and estimated the divergence time of stylommatophoran land snails (Achatina) and Arion slugs at around 126 million years ago, and confirmed the whole genome duplication event shared by them.ConclusionsTo our knowledge, the A. vulgaris genome is the first land slug genome assembly published to date. The high-quality genomic data will provide valuable genetic resources for further phylogeographic studies of A. vulgaris origin and expansion, invasiveness, as well as molluscan aquatic-land transition and shell formation.


GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Lu Wang ◽  
Jinwei Wu ◽  
Xiaomei Liu ◽  
Dandan Di ◽  
Yuhong Liang ◽  
...  

Abstract Background The golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered colobine species endemic to China, which has several distinct traits including a unique social structure. Although a genome assembly for R. roxellana is available, it is incomplete and fragmented because it was constructed using short-read sequencing technology. Thus, important information such as genome structural variation and repeat sequences may be absent. Findings To obtain a high-quality chromosomal assembly for R. roxellana qinlingensis, we used 5 methods: Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, BioNano optical maps, 10X Genomics link-reads, and high-throughput chromosome conformation capture. The assembled genome was ∼3.04 Gb, with a contig N50 of 5.72 Mb and a scaffold N50 of 144.56 Mb. This represented a 100-fold improvement over the previously published genome. In the new genome, 22,497 protein-coding genes were predicted, of which 22,053 were functionally annotated. Gene family analysis showed that 993 and 2,745 gene families were expanded and contracted, respectively. The reconstructed phylogeny recovered a close relationship between R. rollexana and Macaca mulatta, and these 2 species diverged ∼13.4 million years ago. Conclusion We constructed a high-quality genome assembly of the Qinling golden snub-nosed monkey; it had superior continuity and accuracy, which might be useful for future genetic studies in this species and as a new standard reference genome for colobine primates. In addition, the updated genome assembly might improve our understanding of this species and could assist conservation efforts.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


Sign in / Sign up

Export Citation Format

Share Document