scholarly journals Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions

2021 ◽  
Vol 17 (12) ◽  
pp. e1009240
Author(s):  
Ondrej Maxian ◽  
Raúl P. Peláez ◽  
Alex Mogilner ◽  
Aleksandar Donev

Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.

2021 ◽  
Author(s):  
Ondrej Maxian ◽  
Raúl P Peláez ◽  
Alex Mogilner ◽  
Aleksandar Donev

Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and derive continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct continuum Maxwell-type models of the networks.


2007 ◽  
Vol 283 (3) ◽  
pp. 1275-1281 ◽  
Author(s):  
Laura A. Fisher ◽  
Mika Bessho ◽  
Tadayoshi Bessho

The processing of stalled forks caused by DNA interstrand cross-links (ICLs) has been proposed to be an important step in initiating mammalian ICL repair. To investigate a role of the XPF-ERCC1 complex in this process, we designed a model substrate DNA with a single psoralen ICL at a three-way junction (Y-shaped DNA), which mimics a stalled fork structure. We found that the XPF-ERCC1 complex makes an incision 5′ to a psoralen lesion on Y-shaped DNA in a damage-dependent manner. Furthermore, the XPF-ERCC1 complex generates an ICL-specific incision on the 3′-side of an ICL. The ICL-specific 3′-incision, along with the 5′-incision, on the cross-linked Y-shaped DNA resulted in the separation of the two cross-linked strands (the unhooking of the ICL) and the induction of a double strand break near the cross-linked site. These results implicate the XPF-ERCC1 complex in initiating ICL repair by unhooking the ICL, which simultaneously induces a double strand break at a stalled fork.


2021 ◽  
Author(s):  
Seyed Saeed Asadzadeh ◽  
Jens Walher ◽  
Anders Andersen ◽  
Thomas Kiørboe

Abstract The important role of flagellates in aquatic microbial food webs is mediated by their flagella that enable them to swim and generate a feeding current. The flagellum in most predatory flagellates is equipped with rigid hairs that reverse the direction of thrust compared to the thrust due to a smooth flagellum. Conventionally, such reversal has been attributed to drag anisotropy of individual hairs, neglecting their hydrodynamic interactions. Here, we show that hydrodynamic interactions are key to thrust-generation and reversal in hairy flagellates, making their hydrodynamics fundamentally different from the slender-body theory governing microswimmers with smooth flagella. Using computational fluid dynamics and model analysis, we demonstrate that long and not too closely spaced hairs and strongly curved flagellar waveforms are optimal for thrust-generation. Our results form a theoretical basis for understanding the diverse flagellar architectures and feeding modes found in predatory flagellates.


2011 ◽  
Author(s):  
Johan Karremans ◽  
Camillo Regalia ◽  
Giorgia Paleari ◽  
Frank Fincham ◽  
Ming Cui ◽  
...  

2018 ◽  
Vol 18 (18) ◽  
pp. 1567-1571
Author(s):  
Anna Lucia Tornesello ◽  
Luigi Buonaguro ◽  
Maria Lina Tornesello ◽  
Franco M. Buonaguro

Author(s):  
Ildar Garipzanov

This chapter shows the unquestionable role of the sign of the cross as the primary sign of divine authority in Carolingian material and manuscript culture, a role partly achieved at the expense of the diminishing symbolic importance of the late antique christograms. It also analyses the appearance of new cruciform devices in the ninth century as well as the adaptation of the early Byzantine tradition of cruciform invocational monograms in Carolingian manuscript culture, as exemplified in the Bible of San Paolo fuori le mura and several other religious manuscripts. The final section examines some Carolingian carmina figurata and, most importantly, Hrabanus Maurus’ In honorem sanctae crucis, as a window into Carolingian graphicacy and the paramount importance of the sign of the cross as its ultimate organizing principle.


Author(s):  
Dean Keith Simonton

Although psychologists typically see creativity as an individual-level event, sociologists and cultural anthropologists are more likely to view it as a sociocultural phenomenon. This phenomenon takes place at the level of relatively large and enduring collectives, such as cultures, nations, and even whole civilizations. This chapter reviews the extensive research on such macro-level creativity. The review begins with a historical overview before turning to the cross-sectional research on the creative Ortgeist, a subject that encompasses the factors that influence the relative creativity of both preliterate cultures and entire modern nations. From there the chapter turns to role of the Zeitgeist in affecting the creativity of civilizations across time—the rise and fall of creative activity. This research examines both quantitative and qualitative causes that operate both short- and long-term.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Abdallah Daddi-Moussa-Ider ◽  
Hartmut Löwen ◽  
Benno Liebchen

AbstractAs compared to the well explored problem of how to steer a macroscopic agent, like an airplane or a moon lander, to optimally reach a target, optimal navigation strategies for microswimmers experiencing hydrodynamic interactions with walls and obstacles are far-less understood. Here, we systematically explore this problem and show that the characteristic microswimmer-flow-field crucially influences the navigation strategy required to reach a target in the fastest way. The resulting optimal trajectories can have remarkable and non-intuitive shapes, which qualitatively differ from those of dry active particles or motile macroagents. Our results provide insights into the role of hydrodynamics and fluctuations on optimal navigation at the microscale, and suggest that microorganisms might have survival advantages when strategically controlling their distance to remote walls.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueying Qin ◽  
Ida K. Karlsson ◽  
Yunzhang Wang ◽  
Xia Li ◽  
Nancy Pedersen ◽  
...  

Abstract Background Studies on DNA methylation have the potential to discover mechanisms of cardiovascular disease (CVD) risk. However, the role of DNA methylation in CVD etiology remains unclear. Results We performed an epigenome-wide association study (EWAS) on CVD in a longitudinal sample of Swedish twins (535 individuals). We selected CpGs reaching the Bonferroni-corrected significance level (2 $$\times$$ ×  10–7) or the top-ranked 20 CpGs with the lowest P values if they did not reach this significance level in EWAS analysis associated with non-stroke CVD, overall stroke, and ischemic stroke, respectively. We further applied a bivariate autoregressive latent trajectory model with structured residuals (ALT-SR) to evaluate the cross-lagged effect between DNA methylation of these CpGs and cardiometabolic traits (blood lipids, blood pressure, and body mass index). Furthermore, mediation analysis was performed to evaluate whether the cross-lagged effects had causal impacts on CVD. In the EWAS models, none of the CpGs we selected reached the Bonferroni-corrected significance level. The ALT-SR model showed that DNA methylation levels were more likely to predict the subsequent level of cardiometabolic traits rather than the other way around (numbers of significant cross-lagged paths of methylation → trait/trait → methylation were 84/4, 45/6, 66/1 for the identified three CpG sets, respectively). Finally, we demonstrated significant indirect effects from DNA methylation on CVD mediated by cardiometabolic traits. Conclusions We present evidence for a directional association from DNA methylation on cardiometabolic traits and CVD, rather than the opposite, highlighting the role of epigenetics in CVD development.


Sign in / Sign up

Export Citation Format

Share Document