scholarly journals The Conditional Nature of Genetic Interactions: The Consequences of Wild-Type Backgrounds on Mutational Interactions in a Genome-Wide Modifier Screen

PLoS Genetics ◽  
2013 ◽  
Vol 9 (8) ◽  
pp. e1003661 ◽  
Author(s):  
Sudarshan Chari ◽  
Ian Dworkin
2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


2010 ◽  
Vol 20 (8) ◽  
pp. 1122-1132 ◽  
Author(s):  
A. Lin ◽  
R. T. Wang ◽  
S. Ahn ◽  
C. C. Park ◽  
D. J. Smith

2020 ◽  
Vol 21 (19) ◽  
pp. 7043
Author(s):  
Wei Huang ◽  
Dan-Ni Ma ◽  
Hong-Ling Liu ◽  
Jie Luo ◽  
Pu Wang ◽  
...  

Nitrogen (N) is a macroelement with an indispensable role in the growth and development of plants, and tea plant (Camellia sinensis) is an evergreen perennial woody species with young shoots for harvest. During senescence or upon N stress, autophagy has been shown to be induced in leaves, involving a variety of autophagy-related genes (ATGs), which have not been characterized in tea plant yet. In this study, a genome-wide survey in tea plant genome identified a total of 80 Camellia Sinensis autophagy-related genes, CsATGs. The expression of CsATG8s in the tea plant showed an obvious increase from S1 (stage 1) to S4 (stage 4), especially for CsATG8e. The expression levels of AtATGs (Arabidopsis thaliana) and genes involved in N transport and assimilation were greatly improved in CsATG8e-overexpressed Arabidopsis. Compared with wild type, the overexpression plants showed earlier bolting, an increase in amino N content, as well as a decrease in biomass and the levels of N, phosphorus and potassium. However, the N level was found significantly higher in APER (aerial part excluding rosette) in the overexpression plants relative to wild type. All these results demonstrated a convincing function of CsATG8e in N remobilization and plant development, indicating CsATG8e as a potential gene for modifying plant nutrient utilization.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1497-1497
Author(s):  
Ilaria Iacobucci ◽  
Annalisa Lonetti ◽  
Anna Ferrari ◽  
Simona Soverini ◽  
Emanuela Ottaviani ◽  
...  

Abstract Background: BCR-ABL1-positive ALL is the most frequent and prognostically most unfavorable subtype of adult ALL. The main reason for the poor clinical outcome of BCR-ABL1-positive ALL is genetic instability. However, how normal B-cell precursor cells acquire the genetic changes that lead to transformation and progression has not been completely defined. Activation-induced cytidine deaminase (AID) produces immunediversity by inducing somatic hypermutations and class-switch recombinations in human immunoglobulin genes (Ig). Aim: Since at much lower frequency AID can also target non-Ig genes and may even act as a genome-wide mutator, we investigated whether AID was expressed in BCR-ABL1-positive ALL and in chronic myeloid leukemia (CML) at the time of progression to blast crisis. Patients and methods: We analyzed 61 adult de novo Ph+ ALL patients (pts) and 60 CML pts (chronic phase and myeloid/lymphoid blast crisis). AID cDNA, obtained from bone marrow or peripheral blood, was amplified with two pairs of oligonucleotides, the forward primer of each couple conjugated with a fluorescent dye (fluorescein) at its 5′ end. PCR products were then loaded on the ABI Prism 3730 DNA Analyzer for automated capillary gel electrophoresis and the results were plotted with the AbiPrism GeneMapper v3.5 software (Applied Biosystems). Results: On the 61 de novo adult BCR-ABL1-positive ALL pts, AID mRNA and protein were detected in 41 (67%). AID expression correlated with the BCR-ABL1 transcript levels and disappeared after treatment with tyrosine kinase inhibitors at the time of remission. Moreover, AID expression was also found in lymphoid blast crisis CML (60%), but not in myeloid lineage or in chronic phase CML. Different isoforms of AID were expressed. In 10/61 (16%) BCR-ABL1-positive ALL pts the full-length isoform (GeneBank accession number NM_020661) was identified, in 16/61 (26%) the co-expression of the wild-type isoform and of different AID splice variants was found and in 15/61 (25%) only the expression of splice variants was found. These can result from retention of intron 4 (Variant A), omission of exon 4 (Variant B) and 3 (Variant C), and from a deletion of 30 bp in the initial portion of exon 4 (Variant D). In the wild-type mRNA, codon 148 spans exons 3 and 4. In both variants A and B, mRNA splicing disrupts this codon and causes a frameshift, which results in a premature stop codon. If translated, the splice variants produce truncated proteins of 187 and 145 amino acids, respectively. However, the putative deaminase active site, encoded by exon 3, is preserved in both splice variants, but is lacking in the variant C. Since enforced expression of Pax5 induces endogenous AID gene expression, we analyzed the expression levels of Pax5 in all pts (ΔΔCt method, GAPDH as control gene). As expected, we found a very strong difference (p<0.0001) between chronic phase CML and BCR-ABL1-positive ALL, but total Pax5-transcripts did not differ significantly when BCR-ABL1-positive ALL/AID+ and BCR-ABL1-positive ALL/AID− were compared. To investigate whether AID introduces DNA-single strand breaks in BCR-ABL1-positive ALL, we performed a genome wide analysis by 250K NspI single nucleotide polymorphism (SNP) array (Affymetrix Inc., USA). We identified a region of high level amplification and homozygous deletion in all patients. Patients who expressed wild-type AID had a higher number of alterations compared to AID-negative patients (median copy number alteration of 14, range 5–27, versus 4, range 1–6, respectively, p<0.03). Recurring copy number abnormalities were identified in genes with an established role in leukemogenesis, such as IKZF1, CDKN2A, CDKN2B, PAX5, MELK, BTG1 and MDS1. AID consensus motifs (DGYW/WRCH) were mapped very close to the breakpoint cluster regions. Conclusions: Our findings show that BCR-ABL1-positive ALL cells aberrantly express different isoforms of AID that can act as a mutator outside the Ig gene loci in promoting genetic instability in leukemia cells.


2020 ◽  
Author(s):  
Kotchaphorn Mangkalaphiban ◽  
Feng He ◽  
Robin Ganesan ◽  
Chan Wu ◽  
Richard Baker ◽  
...  

Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3′-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5′ of the stop codon, six nucleotides 3′ of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3′-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3′-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 and mRNA secondary structure in the 3′-UTR had milder effects. Additionally, we found low readthrough genes to have shorter 3′-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009538
Author(s):  
Kotchaphorn Mangkalaphiban ◽  
Feng He ◽  
Robin Ganesan ◽  
Chan Wu ◽  
Richard Baker ◽  
...  

Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3’-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5’ of the stop codon, six nucleotides 3’ of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3’-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3’-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3’-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.


2021 ◽  
Vol 134 (6) ◽  
Author(s):  
Tamutenda Chidawanyika ◽  
Rajarshi Chakrabarti ◽  
Kathryn S. Beauchemin ◽  
Henry N. Higgs ◽  
Surachai Supattapone

ABSTRACT A genome-wide screen recently identified SEC24A as a novel mediator of thapsigargin-induced cell death in HAP1 cells. Here, we determined the cellular mechanism and specificity of SEC24A-mediated cytotoxicity. Measurement of Ca2+ levels using organelle-specific fluorescent indicator dyes showed that Ca2+ efflux from endoplasmic reticulum (ER) and influx into mitochondria were significantly impaired in SEC24A-knockout cells. Furthermore, SEC24A-knockout cells also showed ∼44% less colocalization of mitochondria and peripheral tubular ER. Knockout of SEC24A, but not its paralogs SEC24B, SEC24C or SEC24D, rescued HAP1 cells from cell death induced by three different inhibitors of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCA) but not from cell death induced by a topoisomerase inhibitor. Thapsigargin-treated SEC24A-knockout cells showed a ∼2.5-fold increase in autophagic flux and ∼10-fold reduction in apoptosis compared to wild-type cells. Taken together, our findings indicate that SEC24A plays a previously unrecognized role in regulating association and Ca2+ flux between the ER and mitochondria, thereby impacting processes dependent on mitochondrial Ca2+ levels, including autophagy and apoptosis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yulei Zhao ◽  
Kathrin Tyrishkin ◽  
Calvin Sjaarda ◽  
Prem Khanal ◽  
Jeff Stafford ◽  
...  

Abstract Mapping genetic interactions in mammalian cells is limited due to technical obstacles. Here we describe a method called TCGI (tRNA-CRISPR for genetic interactions) to generate a high-efficient, barcode-free and scalable pairwise CRISPR libraries in mammalian cells for identifying genetic interactions. We have generated a genome- wide library to identify genes genetically interacting with TAZ in cell viability regulation. Validation of candidate synergistic genes reveals the screening accuracy of 85% and TAZ-MCL1 is characterized as combinational drug targets for non-small cell lung cancer treatments. TCGI has dramatically improved the current methods for mapping genetic interactions and screening drug targets for combinational therapies.


2015 ◽  
Vol 90 (4) ◽  
pp. 1694-1704 ◽  
Author(s):  
Sabine M. G. van der Sanden ◽  
Weilin Wu ◽  
Naomi Dybdahl-Sissoko ◽  
William C. Weldon ◽  
Paula Brooks ◽  
...  

ABSTRACTVaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine.IMPORTANCEUsing a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work describes a platform-enabling technology applicable to most vaccine-preventable diseases.


2007 ◽  
Vol 6 (8) ◽  
pp. 1474-1485 ◽  
Author(s):  
Rebecca N. Koehler ◽  
Nicole Rachfall ◽  
Ronda J. Rolfes

ABSTRACT The activation of the ADE regulon genes requires the pair of transcription factors Bas1 and Pho2. In a genome-wide screen for additional regulators of the pathway, strains with mutations in multiple subunits of the chromatin remodeling complexes SAGA and SWI/SNF were uncovered. These mutants exhibited decreased expression of an ADE5,7-lacZ reporter and native ADE compared to the wild-type strains, but the expression of the BAS1 and PHO2 genes was not substantially decreased. An unregulated Bas1-Pho2 fusion protein depended upon SAGA and SWI/SNF activity to promote transcription of a reporter. A significant but low-level association of Gcn5-myc and Snf2-myc with the ADE5,7 promoter was independent of adenine growth conditions and independent of the presence of the activator proteins Bas1 and Pho2. However, the increase in occupancy of Bas1 and Pho2 at ADE5,7 depended on both SAGA and SWI/SNF. The loss of catalytic activity of both SAGA and SWI/SNF complexes in the gcn5Δ snf2Δ double mutant was severely detrimental to ADE-lacZ reporter expression and native ADE gene expression, indicating complementary roles for these complexes. We conclude that Bas1 and Pho2 do not recruit the SAGA and SWI/SNF complexes to the ADE5,7 promoter but that the remodeling complexes are necessary to increase the binding of Bas1 and Pho2 in response to the adenine regulatory signal. Our data support the model that the SAGA and SWI/SNF complexes engage in global surveillance that is necessary for the specific response by Bas1 and Pho2.


Sign in / Sign up

Export Citation Format

Share Document