scholarly journals Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8

PLoS Genetics ◽  
2014 ◽  
Vol 10 (5) ◽  
pp. e1004281 ◽  
Author(s):  
James K. Hane ◽  
Jonathan P. Anderson ◽  
Angela H. Williams ◽  
Jana Sperschneider ◽  
Karam B. Singh
mBio ◽  
2021 ◽  
Author(s):  
Samantha C. Waterworth ◽  
Shirley Parker-Nance ◽  
Jason C. Kwan ◽  
Rosemary A. Dorrington

Marine sponges often form symbiotic relationships with bacteria that fulfil a specific need within the sponge holobiont, and these symbionts are often conserved within a narrow range of related taxa. To date, there exist only three known bacterial taxa ( Entoporibacteria , SAUL , and Tethybacterales ) that are globally distributed and found in a broad range of sponge hosts, and little is known about the latter two.


2020 ◽  
Vol 143 ◽  
pp. 104119
Author(s):  
Ping Li ◽  
Xiuzhong Zhang ◽  
Xianjun Xie ◽  
Zunfang Tu ◽  
Ju Gu ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2183
Author(s):  
Nurhani Mat Razali ◽  
Siti Norvahida Hisham ◽  
Ilakiya Sharanee Kumar ◽  
Rohit Nandan Shukla ◽  
Melvin Lee ◽  
...  

Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani’s pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S801-S801
Author(s):  
Jose Alexander ◽  
Daniel Navas ◽  
Marly Flowers ◽  
Angela Charles ◽  
Amy Carr

Abstract Background With the rise of the antimicrobial resistance between different genera and species of bacteria, Phage Therapy is becoming a more realistic and accessible option for patients with limited or no antimicrobial options. Being able to have rapid access to a collection of clinical active phages is key for rapid implementation of phage therapy. The Microbiology Department at AdventHealth Orlando is performing routine screening of environmental and patient samples for isolation of phages against non-fermenting Gram negative bacteria to develop a Phage Bank. Methods Protocols for phage isolation from environmental sources such as lakes, rivers and sewers and clinical samples were developed. A series of respiratory, throat, stool and urine samples were processed following an internal protocol that includes centrifugation, filtration and enrichment. Clinical samples were centrifugated for 10 minutes, filtered using 0.45µm centrifugation filters, seeded with targeted host bacteria (clinical isolates) and incubated at 35°C for 24 hours. The enriched samples were centrifugated and filtered for a final phage enriched solution. Screening and isolation were performed using the Gracia method over trypticase soybean agar (TSA) for plaque morphology and quantification. Host range screening of other clinical isolates of P. aeruginosa was performed using the new isolated and purified phages. Results 4 lytic phages against clinical strains of P. aeruginosa from patient with diagnosis of cystic fibrosis (CF), were isolated and purified from 4 different respiratory samples, including sputum and bronchial alveolar lavage. All phages showed phenotypical characteristics of lytic activity. 1 phage was active against 4 strains of P. aeruginosa, 1 phage was active against 2 strains of P. aeruginosa and the remaining 2 phages were active only against the initial host target strain. Conclusion With this study we demonstrated the potential use of clinical samples as source for isolating active bacteriophages against clinically significant bacteria strains. Clinical samples from vulnerable population of patients with chronic infections are part of our routine “phage-hunting” process to stock and grow our Phage Bank project for future clinical use. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
M. Adamczyk ◽  
E. Lewicka ◽  
R. Szatkowska ◽  
H. Nieznanska ◽  
J. Ludwiczak ◽  
...  

Abstract Background DNA binding KfrA-type proteins of broad-host-range bacterial plasmids belonging to IncP-1 and IncU incompatibility groups are characterized by globular N-terminal head domains and long alpha-helical coiled-coil tails. They have been shown to act as transcriptional auto-regulators. Results This study was focused on two members of the growing family of KfrA-type proteins encoded by the broad-host-range plasmids, R751 of IncP-1β and RA3 of IncU groups. Comparative in vitro and in silico studies on KfrAR751 and KfrARA3 confirmed their similar biophysical properties despite low conservation of the amino acid sequences. They form a wide range of oligomeric forms in vitro and, in the presence of their cognate DNA binding sites, they polymerize into the higher order filaments visualized as “threads” by negative staining electron microscopy. The studies revealed also temperature-dependent changes in the coiled-coil segment of KfrA proteins that is involved in the stabilization of dimers required for DNA interactions. Conclusion KfrAR751 and KfrARA3 are structural homologues. We postulate that KfrA type proteins have moonlighting activity. They not only act as transcriptional auto-regulators but form cytoskeletal structures, which might facilitate plasmid DNA delivery and positioning in the cells before cell division, involving thermal energy.


Author(s):  
Yifan Zhang ◽  
Weiwei Jiang ◽  
Jun Xu ◽  
Na Wu ◽  
Yang Wang ◽  
...  

ObjectiveThe gut microbiota is associated with nonalcoholic fatty liver disease (NAFLD). We isolated the Escherichia coli strain NF73-1 from the intestines of a NASH patient and then investigated its effect and underlying mechanism.Methods16S ribosomal RNA (16S rRNA) amplicon sequencing was used to detect bacterial profiles in healthy controls, NAFLD patients and NASH patients. Highly enriched E. coli strains were cultured and isolated from NASH patients. Whole-genome sequencing and comparative genomics were performed to investigate gene expression. Depending on the diet, male C57BL/6J mice were further grouped in normal diet (ND) and high-fat diet (HFD) groups. To avoid disturbing the bacterial microbiota, some of the ND and HFD mice were grouped as “bacteria-depleted” mice and treated with a cocktail of broad-spectrum antibiotic complex (ABX) from the 8th to 10th week. Then, E. coli NF73-1, the bacterial strain isolated from NASH patients, was administered transgastrically for 6 weeks to investigate its effect and mechanism in the pathogenic progression of NAFLD.ResultsThe relative abundance of Escherichia increased significantly in the mucosa of NAFLD patients, especially NASH patients. The results from whole-genome sequencing and comparative genomics showed a specific gene expression profile in E. coli strain NF73-1, which was isolated from the intestinal mucosa of NASH patients. E. coli NF73-1 accelerates NAFLD independently. Only in the HFD-NF73-1 and HFD-ABX-NF73-1 groups were EGFP-labeled E. coli NF73-1 detected in the liver and intestine. Subsequently, translocation of E. coli NF73-1 into the liver led to an increase in hepatic M1 macrophages via the TLR2/NLRP3 pathway. Hepatic M1 macrophages induced by E. coli NF73-1 activated mTOR-S6K1-SREBP-1/PPAR-α signaling, causing a metabolic switch from triglyceride oxidation toward triglyceride synthesis in NAFLD mice.ConclusionsE. coli NF73-1 is a critical trigger in the progression of NAFLD. E. coli NF73-1 might be a specific strain for NAFLD patients.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1086-1093 ◽  
Author(s):  
Marie-Laure Desprez-Loustau ◽  
Marie Massot ◽  
Nicolas Feau ◽  
Tania Fort ◽  
Antonio de Vicente ◽  
...  

Mango leaves and inflorescences infected by powdery mildew in southern Spain were analyzed using multigene sequencing (ITS + 4 single-copy coding genes) to identify the causal agent. Erysiphe quercicola was detected in 97% out of 140 samples, collected in six different orchards in the Malaga region. Among these, a small proportion also yielded E. alphitoides (8% of all samples) and E. alphitoides was found alone in 3% of samples. A phylogenetic approach was completed by cross inoculations between oak and mango, which led to typical symptoms, supporting the conspecificity of oak and mango powdery mildews. To our knowledge, this is the first report of E. quercicola and E. alphitoides causing powdery mildew on mango trees in mainland Spain, and thus mainland Europe, based on unequivocal phylogenetic and biological evidence. Our study thus confirmed the broad host range of both E. quercicola and E. alphitoides. These results have practical implications in terms of the demonstrated ability for host range expansion in powdery mildews. They also open interesting prospects to the elucidation of molecular mechanisms underlying the ability to infect single versus multiple and unrelated host plants since these two closely related powdery mildew species belong to a small clade with both generalist and specialist powdery mildews.


Sign in / Sign up

Export Citation Format

Share Document