scholarly journals CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components

PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009232
Author(s):  
Takahiro Ide ◽  
Wang Kyaw Twan ◽  
Hao Lu ◽  
Yayoi Ikawa ◽  
Lin-Xenia Lim ◽  
...  

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009306
Author(s):  
Isabella Aprea ◽  
Johanna Raidt ◽  
Inga Marlena Höben ◽  
Niki Tomas Loges ◽  
Tabea Nöthe-Menchen ◽  
...  

Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families.


2015 ◽  
Vol 26 (8) ◽  
pp. 1463-1475 ◽  
Author(s):  
Paulina Urbanska ◽  
Kangkang Song ◽  
Ewa Joachimiak ◽  
Lucja Krzemien-Ojak ◽  
Piotr Koprowski ◽  
...  

Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.


1994 ◽  
Vol 107 (2) ◽  
pp. 631-638
Author(s):  
F. Buss ◽  
H. Kent ◽  
M. Stewart ◽  
S.M. Bailer ◽  
J.A. Hanover

We have expressed rat nucleoporin p62 cDNA in Escherichia coli to obtain material for structural and self-association studies. Electron microscopy and circular dichroism spectroscopy are consistent with a rod-shaped molecule with an alpha-helical coiled-coil domain at its C terminus and a cross-beta structure at its N terminus, separated by a threonine-rich linker, which has a less-defined secondary structure. Electron microscopy and the solubility properties of fragments produced using thrombin and CNBr digestion indicate that p62 molecules associate to form linear chains and that a small region near the C terminus is an important determinant of assembly. This association may have important consequences for pore structure and function; for example, one way p62 could associate would be to form rings in nuclear pores that could function like barrel hoops.


2020 ◽  
Vol 29 ◽  
pp. 096368972094801 ◽  
Author(s):  
Tao Zhang ◽  
Lijuan Zhang ◽  
Dan Han ◽  
Kebinur Tursun ◽  
Xiaobo Lu

As a novel class of noncoding RNAs, circular RNAs (circRNAs) have been recently reported to be involved in cell development and function. However, the functional role of circRNAs in hepatocellular carcinoma (HCC) remains unclear. In the present study, we found that the expression of human circ_101141 was upregulated in HCC tissues and cells. In addition, downregulation of circ_101141 dramatically inhibited cell proliferation, migration, and invasion in HCC cells. In addition, by using the bioinformatics tools, the potential target of circ_101141 was predicted. Mechanistic investigations indicated that circ_101141 acted as a miR-1297 “sponge”; meanwhile, Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) was a direct target of miR-1297. Further experiments demonstrated that circ_101141 contributed to the progression of HCC by acting as competing endogenous RNA (ceRNA) of miR-1297 to regulate ROCK1 expression. Furthermore, knockdown of circ_101141 attenuated HCC tumorigenesis in vivo. Taken together, these findings indicated that circRNA circ_101141 acted as a ceRNA to facilitate tumorigenesis of HCC by regulating miR-1297/ROCK1 pathway.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
James B Papizan ◽  
John R McAnally ◽  
Rhonda Bassel-Duby ◽  
Eric N Olson

Mutations in numerous membrane proteins cause debilitating myopathies. The discovery of novel muscle-specific, membrane proteins would likely provide insight into mechanisms of disease and potentially yield new therapeutic targets. Through bioinformatics screening for muscle-specific membrane proteins with unknown function, we identified C3orf43 or single-pass membrane protein with coiled-coil domains 1 (Smco1). Consistent with bioinformatics predictions, Smco1 is expressed exclusively in cardiac and skeletal muscle. We demonstrate with chromatin immunoprecipitation and luciferase promoter assays that Smco1 is a Mef2-regulated gene with robust expression occurring shortly after birth. Immunofluorescent analysis demonstrates Scmo1 localizes to the cardiomyocyte sarcolemma and intercalated disks. Talen-mediated disruption of Smco1 in mice results in stunted postnatal growth, cardiac hypoplasia and skeletal muscle myopathy as early as postnatal day 15. While studies are on going to determine the function of Smco1, our findings reveal an essential role of Smco1 in striated muscle structure and function. The identification of heart- and muscle-specific membrane proteins will likely illuminate the mechanisms of muscular membrane diseases.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009388
Author(s):  
Rafał Bazan ◽  
Adam Schröfel ◽  
Ewa Joachimiak ◽  
Martyna Poprzeczko ◽  
Gaia Pigino ◽  
...  

Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Sign in / Sign up

Export Citation Format

Share Document