scholarly journals Genetic diversity of the Plasmodium falciparum GTP-cyclohydrolase 1, dihydrofolate reductase and dihydropteroate synthetase genes reveals new insights into sulfadoxine-pyrimethamine antimalarial drug resistance

PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009268
Author(s):  
Anna Turkiewicz ◽  
Emilia Manko ◽  
Colin J. Sutherland ◽  
Ernest Diez Benavente ◽  
Susana Campino ◽  
...  

Plasmodium falciparum parasites resistant to antimalarial treatments have hindered malaria disease control. Sulfadoxine-pyrimethamine (SP) was used globally as a first-line treatment for malaria after wide-spread resistance to chloroquine emerged and, although replaced by artemisinin combinations, is currently used as intermittent preventive treatment of malaria in pregnancy and in young children as part of seasonal malaria chemoprophylaxis in sub-Saharan Africa. The emergence of SP-resistant parasites has been predominantly driven by cumulative build-up of mutations in the dihydrofolate reductase (pfdhfr) and dihydropteroate synthetase (pfdhps) genes, but additional amplifications in the folate pathway rate-limiting pfgch1 gene and promoter, have recently been described. However, the genetic make-up and prevalence of those amplifications is not fully understood. We analyse the whole genome sequence data of 4,134 P. falciparum isolates across 29 malaria endemic countries, and reveal that the pfgch1 gene and promoter amplifications have at least ten different forms, occurring collectively in 23% and 34% in Southeast Asian and African isolates, respectively. Amplifications are more likely to be present in isolates with a greater accumulation of pfdhfr and pfdhps substitutions (median of 1 additional mutations; P<0.00001), and there was evidence that the frequency of pfgch1 variants may be increasing in some African populations, presumably under the pressure of SP for chemoprophylaxis and anti-folate containing antibiotics used for the treatment of bacterial infections. The selection of P. falciparum with pfgch1 amplifications may enhance the fitness of parasites with pfdhfr and pfdhps substitutions, potentially threatening the efficacy of this regimen for prevention of malaria in vulnerable groups. Our work describes new pfgch1 amplifications that can be used to inform the surveillance of SP drug resistance, its prophylactic use, and future experimental work to understand functional mechanisms.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jacques-Mari Ndong Ngomo ◽  
Denise Patricia Mawili-Mboumba ◽  
Noé Patrick M’Bondoukwe ◽  
Rosalie Nikiéma Ndong Ella ◽  
Marielle Karine Bouyou Akotet

In Gabon, sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment during pregnancy (IPTp-SP) and for uncomplicated malaria treatment through ACTs drug. P. falciparum strains resistant to SP are frequent in areas where this drug is highly used and is associated with the occurrence of mutations on Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) genes. The aim of the study was to compare the proportion of mutations on Pfdhfr and Pfdhps genes in isolates collected at Oyem in northern Gabon, in 2005 at the time of IPTp-SP introduction and three years later. Point mutations were analyzed by nested PCR-RFLP method. Among 91 isolates, more than 90% carried Pfdhfr 108N and Pfdhfr 59R alleles. Frequencies of Pfdhfr 51I (98%) and Pfdhps 437G (67.7%) mutant alleles were higher in 2008. Mutations at codons 164, 540, and 581 were not detected. The proportion of the triple Pfdhfr mutation and quadruple mutation including A437G was high: 91.9% in 2008 and 64.8% in 2008, respectively. The present study highlights an elevated frequency of Pfdhfr and Pfdhps mutant alleles, although quintuple mutations were not found in north Gabon. These data suggest the need of a continuous monitoring of SP resistance in Gabon.


2018 ◽  
Vol 1 ◽  
pp. 1
Author(s):  
James Abugri ◽  
Felix Ansah ◽  
Kwaku P. Asante ◽  
Comfort N. Opoku ◽  
Lucas A. Amenga-Etego ◽  
...  

Background: The emergence and spread of resistance in Plasmodium falciparum to chloroquine (CQ) necessitated the change from CQ to artemisinin-based combination therapies (ACTs) as first-line drug for the management of uncomplicated malaria in Ghana in 2005. Sulphadoxine-pyrimethamine (SP) which was the second line antimalarial drug in Ghana, was now adopted for intermittent preventive treatment of malaria in pregnancy (IPTp). Methods: To examine the prevalence of molecular markers associated with CQ and antifolate drug resistance in Ghana, we employed restriction fragment length polymorphism polymerase chain reaction to genotype and compare single nucleotide polymorphisms (SNPs) in the P. falciparum chloroquine resistance transporter ( pfcrt, PF3D7_0709000), multidrug resistance ( pfmdr1, PF3D7_0523000), bifunctional dihydrofolate reductase-thymidylate synthase ( pfdhfr, PF3D7_0417200) and dihydropteroate synthase ( pfdhps, PF3D7_0810800) genes. Parasites were collected from children with malaria reporting to hospitals in three different epidemiological areas of Ghana (Accra, Kintampo and Navrongo) in 2012-2013 and 2016-2017. Results: The overall prevalence of the CQ resistance-associated pfcrt 76T allele was 8%, whereas pfmdr1 86Y and 184F alleles were present in 10.2% and 65.1% of infections, respectively. The majority of the isolates harboured the antifolate resistance-associated pfdhfr alleles 51I (83.4%), 59R (85.9 %) and 108N (90.5%). Pfdhps 437G and 540E were detected in 90.6% and 0.7% of infections, respectively. We observed no significant difference across the three study sites for all the polymorphisms except for pfdhps 437G, which was more common in Accra compared to Kintampo for the 2016-2017 isolates. Across both pfdhfr and pfdhps genes, a large proportion (61%) of the isolates harboured the quadruple mutant combination (I 51 R 59 N 108/ G 437). CQ resistance alleles decreased during the 12 years after CQ withdrawal, but an mediate SP resistance alleles increased. Conclusion: Surveillance of the prevalence of resistance alleles is necessary in monitoring the efficacy of antimalarial drugs.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zoenabo Douamba ◽  
Cyrille Bisseye ◽  
Florencia W. Djigma ◽  
Tegwinde R. Compaoré ◽  
Valérie Jean Telesphore Bazie ◽  
...  

Sub-Saharan Africa records each year about thirty-two million pregnant women living in areas of high transmission ofPlasmodium falciparumcausing malaria. The aim of this study was to carve out the prevalence of asymptomatic malaria among pregnant women and to emphasize its influence on haematological markers. The prevalence ofPlasmodium falciparumasymptomatic infection among pregnant women was 30% and 24% with rapid detection test (RDT) and microscopy, respectively. The prevalence ofP. falciparumasymptomatic malaria was reduced among pregnant women using sulfadoxine-pyrimethamine's intermittent preventive treatment and 61% of them were anaemic. Anaemia was significantly more common in women infected withP. falciparumcompared with the uninfected pregnant women. Most of the women had normal levels of homocysteine and low levels of folate, respectively. Therefore, the systematic diagnosis of malaria should be introduced to pregnant women as a part of the antenatal care.


2015 ◽  
Vol 59 (7) ◽  
pp. 3995-4002 ◽  
Author(s):  
Naomi W. Lucchi ◽  
Sheila Akinyi Okoth ◽  
Franklin Komino ◽  
Philip Onyona ◽  
Ira F. Goldman ◽  
...  

ABSTRACTThe molecular basis of sulfadoxine-pyrimethamine (SP) resistance lies in a combination of single-nucleotide polymorphisms (SNPs) in two genes coding forPlasmodium falciparumdihydrofolate reductase (Pfdhfr) andP. falciparumdihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. The continued use of SP for intermittent preventive treatment in pregnant women in many African countries, despite SP's discontinuation as a first-line antimalarial treatment option due to high levels of drug resistance, may further increase the prevalence of SP-resistant parasites and/or lead to the selection of new mutations. An antimalarial drug resistance surveillance study was conducted in western Kenya between 2010 and 2013. A total of 203 clinical samples from children with uncomplicated malaria were genotyped for SNPs associated with SP resistance. The prevalence of the triple-mutantPfdhfrC50I51R59N108I164genotype and the double-mutantPfdhpsS436G437E540A581A613genotype was high. Two triple-mutantPfdhpsgenotypes, S436G437E540G581A613andH436G437E540A581A613, were found, with the latter thus far being uniquely found in western Kenya. The prevalence of the S436G437E540G581A613genotype was low. However, a steady increase in the prevalence of thePfdhpstriple-mutantH436G437E540A581A613genotype has been observed since its appearance in early 2000. Isolates with these genotypes shared substantial microsatellite haplotypes with the most common double-mutant allele, suggesting that this triple-mutant allele may have evolved locally. Overall, these findings show that the prevalence of theH436G437E540A581A613triple mutant may be increasing in this population and could compromise the efficacy of SP for intermittent preventive treatment in pregnant women if it increases the resistance threshold further.


2017 ◽  
Vol 216 (8) ◽  
pp. 1008-1017 ◽  
Author(s):  
Melissa D Conrad ◽  
Daniel Mota ◽  
Marissa Foster ◽  
Stephen Tukwasibwe ◽  
Jennifer Legac ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adeyemi T. Kayode ◽  
Fehintola V. Ajogbasile ◽  
Kazeem Akano ◽  
Jessica N. Uwanibe ◽  
Paul E. Oluniyi ◽  
...  

AbstractIn 2005, the Nigerian Federal Ministry of Health revised the treatment policy for uncomplicated malaria with the introduction of artemisinin-based combination therapies (ACTs). This policy change discouraged the use of Sulphadoxine-pyrimethamine (SP) as the second-line treatment of uncomplicated falciparum malaria. However, SP is used as an intermittent preventive treatment of malaria in pregnancy (IPTp) and seasonal malaria chemoprevention (SMC) in children aged 3–59 months. There have been increasing reports of SP resistance especially in the non-pregnant population in Nigeria, thus, the need to continually monitor the efficacy of SP as IPTp and SMC by estimating polymorphisms in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes associated with SP resistance. The high resolution-melting (HRM) assay was used to investigate polymorphisms in codons 51, 59, 108 and 164 of the dhfr gene and codons 437, 540, 581 and 613 of the dhps gene. DNA was extracted from 271 dried bloodspot filter paper samples obtained from children (< 5 years old) with uncomplicated malaria. The dhfr triple mutant I51R59N108, dhps double mutant G437G581 and quadruple dhfr I51R59N108 + dhps G437 mutant haplotypes were observed in 80.8%, 13.7% and 52.8% parasites, respectively. Although the quintuple dhfr I51R59N108 + dhps G437E540 and sextuple dhfr I51R59N108 + dhps G437E540G581 mutant haplotypes linked with in-vivo and in-vitro SP resistance were not detected, constant surveillance of these haplotypes should be done in the country to detect any change in prevalence.


Author(s):  
Helle Hansson ◽  
Daniel T R Minja ◽  
Sofie L Moeller ◽  
John P A Lusingu ◽  
Ib C Bygbjerg ◽  
...  

Abstract Mutations in the Plasmodium falciparum genes Pfdhfr and Pfdhps, particularly the sextuple mutant haplotype threatens the antimalarial effectiveness of sulfadoxine-pyrimethamine as intermittent preventive treatment during pregnancy (IPTp). To explore the impact of sextuple mutant haplotype infections on outcome measures after provision of IPTp-SP, we monitored birth outcomes in women followed from prior to conception or from the first trimester until delivery. Women infected with sextuple haplotypes in early 2 nd trimester specifically, delivered newborns with a lower birth weight (-267g, 95% CI -454; -59, p=0·01) compared to women who did not have malaria during pregnancy and women infected with less SP resistant haplotypes (-461g, 95% CI -877; -44, p=0·03). Thus, sextuple haplotype infections seems to impact the effectiveness of SP for IPTp and directly impact birth outcome by lowering birth weight. Close monitoring and targeted malaria control during early pregnancy is therefore crucial to improve birth outcomes.


2021 ◽  
Vol 42 (2) ◽  
pp. 206-213
Author(s):  
G.Y. Benjamin ◽  
H.I. Inabo ◽  
M.H.I. Doko ◽  
B.O. Olayinka

Malaria is a disease of public health concern in Nigeria and sub-Saharan Africa. It is caused by intracellular parasites of the genus Plasmodium. The aim of this study was to detect genetic markers associated with Plasmodium falciparum drug resistance among malaria patients in Kaduna State, Nigeria. The study was a cross-sectional study that lasted from May 2018 to October 2018. Three hundred blood samples were collected from consenting individuals attending selected hospitals, in the three senatorial districts of Kaduna State, Nigeria. Structured questionnaire were used to obtain relevant data from study participants. The blood samples were screened for malaria parasites using microscopy and rapid diagnostic test kit. Polymerase Chain Reaction was used for detection of the drug resistance genes. Pfcrt, pfmdr1, pfdhfr, pfdhps and pfatpase6 genes were detected at expected amplicon sizes from the malaria positive samples. The pfatpase6 PCR amplicons were sequenced and a phylogenetic tree was created to determine their relatedness. Result showed that Pfcrt (80%) had the highest prevalence, followed by pfdhfr (60%), pfmdr1 (36%) and pfdhps (8%). Pfatpase6 was also detected in 73.3% of the samples, and a phylogenetic tree showed relatedness between the pfatpase6  sequences in this study and those deposited in the GenBank. In conclusion, the study detected that Plasmodium falciparum genes were associated with drug resistance to commonly used antimalarials.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Patience Nayebare ◽  
Victor Asua ◽  
Melissa D. Conrad ◽  
Richard Kajubi ◽  
Abel Kakuru ◽  
...  

ABSTRACT Intermittent preventive treatment in pregnancy (IPTp) with monthly sulfadoxine-pyrimethamine (SP) is recommended for malaria-endemic parts of Africa, but efficacy is compromised by resistance, and, in recent trials, dihydroartemisinin-piperaquine (DP) has shown better antimalarial protective efficacy. We utilized blood samples from a recent trial to evaluate selection by IPTp with DP or SP of Plasmodium falciparum genetic polymorphisms that alter susceptibility to these drugs. The prevalence of known genetic polymorphisms associated with altered drug susceptibility was determined in parasitemic samples, including 375 collected before IPTp drugs were administered, 125 randomly selected from those receiving SP, and 80 from those receiving DP. For women receiving DP, the prevalence of mixed/mutant sequences was greater in samples collected during IPTp than that in samples collected prior to the intervention for PfMDR1 N86Y (20.3% versus 3.9%; P < 0.001), PfMDR1 Y184F (73.0% versus 53.0%; P < 0.001), and PfCRT K76T (46.4% versus 24.0%; P < 0.001). Considering SP, prior to IPTp, the prevalence of all 5 common antifolate mutations was over 92%, and this prevalence increased following exposure to SP, although none of these changes were statistically significant. For two additional mutations associated with high-level SP resistance, the prevalence of PfDHFR 164L (13.7% versus 4.0%; P = 0.004), but not PfDHPS 581G (1.9% versus 3.0%; P = 0.74), was greater in samples collected during IPTp compared to those collected before the intervention. Use of IPTp in Uganda selected for parasites with mutations associated with decreased susceptibility to IPTp regimens. Thus, a potential drawback of IPTp is selection of parasites with decreased drug susceptibility.


Sign in / Sign up

Export Citation Format

Share Document