mutant haplotype
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 7)

H-INDEX

1
(FIVE YEARS 0)

Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 564
Author(s):  
Carine Ayoub ◽  
Yara Azar ◽  
Yara Abou-Khalil ◽  
Youmna Ghaleb ◽  
Sandy Elbitar ◽  
...  

Familial hypobetalipoproteinemia (FHBL) is a codominant genetic disorder characterized by reduced plasma levels of low-density lipoprotein cholesterol and apolipoprotein B. To our knowledge, no study on FHBL in Lebanon and the Middle East region has been reported. Therefore, we conducted genetic studies in unrelated families and probands of Lebanese origin presenting with FHBL, in order to identify the causes of this disease. We found that 71% of the recruited probands and their affected relatives were heterozygous for the p.(Arg490Trp) variant in the APOB gene. Haplotype analysis showed that these patients presented the same mutant haplotype. Moreover, there was a decrease in plasma levels of PCSK9 in affected individuals compared to the non-affected and a significant positive correlation between circulating PCSK9 and ApoB levels in all studied probands and their family members. Some of the p.(Arg490Trp) carriers suffered from diabetes, hepatic steatosis or neurological problems. In conclusion, the p.(Arg490Trp) pathogenic variant seems a cause of FHBL in patients from Lebanese origin, accounting for approximately 70% of the probands with FHBL presumably as a result of a founder mutation in Lebanon. This study is crucial to guide the early diagnosis, management and prevention of the associated complications of this disease.


2021 ◽  
Vol 118 (35) ◽  
pp. e2102467118
Author(s):  
Julie Perreau ◽  
Bo Zhang ◽  
Gerald P. Maeda ◽  
Mark Kirkpatrick ◽  
Nancy A. Moran

Numerous animal lineages have maternally inherited symbionts that are required for host reproduction and growth. Endosymbionts also pose a risk to their hosts because of the mutational decay of their genomes through genetic drift or to selfish mutations that favor symbiont fitness over host fitness. One model for heritable endosymbiosis is the association of aphids with their obligate bacterial symbiont, Buchnera. We experimentally established heteroplasmic pea aphid matrilines containing pairs of closely related Buchnera haplotypes and used deep sequencing of diagnostic markers to measure haplotype frequencies in successive host generations. These frequencies were used to estimate the effective population size of Buchnera within hosts (i.e., the transmission bottleneck size) and the extent of within-host selection. The within-host effective population size was in the range of 10 to 20, indicating a strong potential for genetic drift and fixation of deleterious mutations. Remarkably, closely related haplotypes were subject to strong within-host selection, with selection coefficients as high as 0.5 per aphid generation. In one case, the direction of selection depended on the thermal environment and went in the same direction as between-host selection. In another, a new mutant haplotype had a strong within-host advantage under both environments but had no discernible effect on host-level fitness under laboratory conditions. Thus, within-host selection can be strong, resulting in a rapid fixation of mutations with little impact on host-level fitness. Together, these results show that within-host selection can drive evolution of an obligate symbiont, accelerating sequence evolution.


Author(s):  
Helle Hansson ◽  
Daniel T R Minja ◽  
Sofie L Moeller ◽  
John P A Lusingu ◽  
Ib C Bygbjerg ◽  
...  

Abstract Mutations in the Plasmodium falciparum genes Pfdhfr and Pfdhps, particularly the sextuple mutant haplotype threatens the antimalarial effectiveness of sulfadoxine-pyrimethamine as intermittent preventive treatment during pregnancy (IPTp). To explore the impact of sextuple mutant haplotype infections on outcome measures after provision of IPTp-SP, we monitored birth outcomes in women followed from prior to conception or from the first trimester until delivery. Women infected with sextuple haplotypes in early 2 nd trimester specifically, delivered newborns with a lower birth weight (-267g, 95% CI -454; -59, p=0·01) compared to women who did not have malaria during pregnancy and women infected with less SP resistant haplotypes (-461g, 95% CI -877; -44, p=0·03). Thus, sextuple haplotype infections seems to impact the effectiveness of SP for IPTp and directly impact birth outcome by lowering birth weight. Close monitoring and targeted malaria control during early pregnancy is therefore crucial to improve birth outcomes.


2021 ◽  
Author(s):  
Harun Njoroge ◽  
Arjen van’t Hof ◽  
Ambrose Oruni ◽  
Dimitra Pipini ◽  
Sanjay C. Nagi ◽  
...  

AbstractInsecticide resistance provides both an increasingly pressing threat to the control of vector-borne diseases and insights into the remarkable capacity of natural populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on deployment of pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs), but resistance in the major malaria vectors has increased over the last 15 years in concert with dramatic expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance in mosquitoes, which may almost entirely overcome pyrethroid efficacy, is crucial for the development and deployment of potentially resistance-breaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes, including some commonly implicated in resistance. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae from the Kenya-Uganda border region around Lake Victoria, with stepwise replacement of the double-mutant (Zanzibar-like TE and Cyp6p4-236M) with the triple-mutant haplotype (including Cyp6aa1 duplication), which has spread into the Democratic Republic of Congo and Tanzania. The triple-mutant haplotype is strongly associated with increased expression of genes able to metabolise pyrethroids and is strongly predictive of resistance to pyrethroids most notably deltamethrin, a commonly-used LLIN insecticide. Importantly, there was increased mortality in mosquitoes carrying the triple-mutation when exposed to nets co-treated with the synergist piperonyl butoxide (PBO). Frequencies of the triple-mutant haplotype remain spatially variable within countries, suggesting an effective marker system to guide deployment decisions for limited supplies of PBO-pyrethroid co-treated LLINs across African countries. Duplications of the Cyp6aa1 gene are common in An. gambiae across Africa and, given the enzymes metabolic activity, are likely to be a useful diagnostic for high levels of pyrethroid resistance.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fang Huang ◽  
He Yan ◽  
Jing-Bo Xue ◽  
Yan-Wen Cui ◽  
Shui-Sen Zhou ◽  
...  

Abstract Background The emergence and spread of multidrug resistance poses a significant risk to malaria control and eradication goals in the world. There has been no indigenous malaria cases reported in China since 2017, and China is approaching national malaria elimination. Therefore, anti-malarial drug resistance surveillance and tracking the emergence and spread of imported drug-resistant malaria cases will be necessary in a post-elimination phase in China. Methods Dried blood spots were obtained from Plasmodium falciparum-infected cases returned from Africa to China between 2012 and 2015, prior to anti-malarial drug treatment. Whole DNA were extracted and known polymorphisms relating to drug resistance of pfcrt, pfmdr1 gene, and the propeller domain of pfk13 were evaluated by nested PCR and sequencing. The haplotypes and prevalence of these three genes were evaluated separately. Chi-squared test and Fisher's exact test were used to evaluate differences among the different sub-regions of Africa. A P value < 0.05 was used to evaluate differences with statistical significance. The maps were created using ArcGIS. Results A total of 731 P. falciparum isolates were sequenced at the pfcrt locus. The wild type CVMNK was the most prevalent haplotype with prevalence of 62.8% and 29.8% of the isolates showed the triple mutant haplotype CVIET. A total of 434 P. falciparum isolates were successfully sequenced and pfmdr1 allelic variants were observed in only codons 86, 184 and 1246. Twelve haplotypes were identified and the prevalence of the wild type pfmdr1 NYD was 44.1%. The single mutant pfmdr1 in codons 86 and 184 was predominant but the haplotype NYY with single mutation in codon 1246 was not observed. The double mutant haplotype YFD was common in Africa. About 1,357 isolates were successfully sequenced of pfk13-propeller domain, the wild type was found in 1,308 samples (96.4%) whereby 49 samples (3.6%) had mutation in pfk13. Of 49 samples with pfk13 mutations, 22 non-synonymous and 4 synonymous polymorphic sites were confirmed. The A578S was the most common mutation in pfk13-propeller domain and three mutations associated with artemisinin resistance (M476I, R539T, P553L) were identified in three isolates. Conclusion This study provides evidence that could give insight into potential issues with anti-malarial drug resistance to inform national drug policy in China in order to treat imported cases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hargobinder Kaur ◽  
Rakesh Sehgal ◽  
Archit Kumar ◽  
Praveen K. Bharti ◽  
Devendra Bansal ◽  
...  

Abstract Background The increasing antimalarial drug resistance is a significant hindrance to malaria control and elimination programs. For the last six decades, chloroquine (CQ) plus pyrimethamine remains the first-line treatment for P. vivax malaria. Regions where both P. falciparum and P. vivax co-exist, P. vivax is exposed to antifolate drugs due to either misdiagnosis or improper treatment that causes selective drug pressure to evolve. Therefore, the present study aims to estimate antimalarial drug resistance among the complicated and uncomplicated P. vivax patients. Methods A total of 143 P. vivax malaria positive patients were enrolled in this study, and DNA was isolated from their blood samples. Pvcrt-o, Pvmdr-1, Pvdhps, and Pvdhfr genes were PCRs amplified, and drug resistance-associated gene mutations were analyzed. Statistical analysis of the drug resistance genes and population diversity was performed using MEGA vs. 7.0.21 and DnaSP v software. Results Among the CQ resistance marker gene Pvcrt-o, the prevalence of K10 insertion was 17.5% (7/40) and 9.5% (7/73) of complicated and uncomplicated P vivax group isolates respectively. In Pvmdr-1, double mutant haplotype (M958/L1076) was found in 99% of the clinical isolates. Among the pyrimethamine resistance-associated gene Pvdhfr, the double mutant haplotype I13P33F57R58T61N117I173 was detected in 23% (11/48) in complicated and 20% (17/85) in uncomplicated group isolates. In the sulphadoxine resistance-associated Pvdhps gene, limited polymorphism was observed with the presence of a single mutant (D459A) among 16 and 5% of the clinical isolates in the complicated and uncomplicated group respectively. Conclusion The study presents the situations of polymorphism in the antimalarial drug resistance-associated genes and emphasizes the need for regular surveillance. It is imperative for the development of suitable antimalarial drug policy in India.


2020 ◽  
Vol 6 (26) ◽  
pp. eaba3231
Author(s):  
Emilia M. Pinto ◽  
Bonald C. Figueiredo ◽  
Wenan Chen ◽  
Henrique C.R. Galvao ◽  
Maria Nirvana Formiga ◽  
...  

Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.


2006 ◽  
Vol 147 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Sumiti Vinayak ◽  
Pooja Mittra ◽  
Yagya D. Sharma
Keyword(s):  

Genetics ◽  
1985 ◽  
Vol 110 (4) ◽  
pp. 709-721
Author(s):  
J Peters ◽  
S J Andrews ◽  
J F Loutit ◽  
J B Clegg

ABSTRACT A mutation induced by ethylnitrosourea in a spermatogonial stem cell of a 101/H mouse has resulted in a structurally altered β-diffuse major globin in one of his offspring. The mutant hemoglobin is associated with polycythemia, rubor, increased oxygen affinity and decreased hem-hem interaction. The mutant haplotype has been designated Hbbd  4, polycythemia. Amino acid analysis of the mutant globin has shown that a single substitution β145 Tyr → Cys has occurred, and it is proposed that ethylnitrosourea induced an A → G transition in the tyrosine codon (TAC → TGC). This murine polycythemia is homologous with hemoglobin Rainier in man, in which the amino acid substitution is also β145 Tyr → Cys and which is associated with similar physiological consequences.


Sign in / Sign up

Export Citation Format

Share Document