scholarly journals Three classes of epigenomic regulators converge to hyperactivate the essential maternal gene deadhead within a heterochromatin mini-domain

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009615
Author(s):  
Daniela Torres-Campana ◽  
Béatrice Horard ◽  
Sandrine Denaud ◽  
Gérard Benoit ◽  
Benjamin Loppin ◽  
...  

The formation of a diploid zygote is a highly complex cellular process that is entirely controlled by maternal gene products stored in the egg cytoplasm. This highly specialized transcriptional program is tightly controlled at the chromatin level in the female germline. As an extreme case in point, the massive and specific ovarian expression of the essential thioredoxin Deadhead (DHD) is critically regulated in Drosophila by the histone demethylase Lid and its partner, the histone deacetylase complex Sin3A/Rpd3, via yet unknown mechanisms. Here, we identified Snr1 and Mod(mdg4) as essential for dhd expression and investigated how these epigenomic effectors act with Lid and Sin3A to hyperactivate dhd. Using Cut&Run chromatin profiling with a dedicated data analysis procedure, we found that dhd is intriguingly embedded in an H3K27me3/H3K9me3-enriched mini-domain flanked by DNA regulatory elements, including a dhd promoter-proximal element essential for its expression. Surprisingly, Lid, Sin3a, Snr1 and Mod(mdg4) impact H3K27me3 and this regulatory element in distinct manners. However, we show that these effectors activate dhd independently of H3K27me3/H3K9me3, and that dhd remains silent in the absence of these marks. Together, our study demonstrates an atypical and critical role for chromatin regulators Lid, Sin3A, Snr1 and Mod(mdg4) to trigger tissue-specific hyperactivation within a unique heterochromatin mini-domain.

2021 ◽  
Author(s):  
Daniela Torres-Campana ◽  
Béatrice Horard ◽  
Sandrine Denaud ◽  
Gérard Benoit ◽  
Benjamin Loppin ◽  
...  

The formation of a diploid zygote is a highly complex cellular process that is entirely controlled by maternal gene products stored in the egg cytoplasm. This highly specialized transcriptional program is tightly controlled at the chromatin level in the female germline. As an extreme case in point, the massive and specific ovarian expression of the essential thioredoxin Deadhead (DHD) is critically regulated in Drosophila by the histone demethylase Lid and its partner, the histone deacetylase complex scaffold Sin3A, via yet unknown mechanisms. Here, we identified the Brahma chromatin remodeler sub-unit Snr1 and the insulator component Mod(mdg4) as essential for dhd expression and investigated how these epigenomic effectors act with Lid and Sin3A to hyperactivate dhd . Using Cut&Run chromatin profiling with a dedicated data analysis procedure, we found that dhd is intriguingly embedded in an H3K27me3/H3K9me3-enriched mini-domain flanked by DNA regulatory elements, including a dhd promoter-proximal element essential for its expression. Surprisingly, Lid, Sin3A, Snr1 and Mod(mdg4) impact H3K27me3 and this regulatory element in distinct manners. However, we show that these effectors activate dhd independently of H3K27me3/H3K9me3, and that these marks are not required to repress dhd . Together, our study demonstrates an atypical and critical role for chromatin regulators Lid, Sin3A, Snr1 and Mod(mdg4) to trigger tissue-specific hyperactivation within a unique heterochromatin mini-domain.


2018 ◽  
Author(s):  
Ni Huang ◽  
Wei Qiang Seow ◽  
Julie Ahringer

AbstractInteractions between cis-regulatory elements such as promoters and enhancers are important for transcription but global identification of these interactions remains a major challenge. Leveraging the chromatin accessiblity of regulatory elements, we developed ARC-C (accessible region chromosome conformation capture), which profiles chromatin regulatory interactions genome-wide at high resolution. Applying ARC-C to C. elegans, we identify ~15,000 significant interactions at 500bp resolution. Regions bound by transcription factors and chromatin regulators such as cohesin and condensin II are enriched for interactions, and we use ARC-C to show that the BLMP-1 transcription factor mediates interactions between its targets. Investigating domain level architecture, we find that C. elegans chromatin domains defined by either active or repressive modifications form topologically associating domains (TADs) and that these domains interact to form A/B (active/inactive) compartment structure. ARC-C is a powerful new tool to interrogate genome architecture and regulatory interactions at high resolution.


Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 957-974 ◽  
Author(s):  
M. Frasch ◽  
X. Chen ◽  
T. Lufkin

The HOM-C/Hox complexes are an evolutionary related family of genes that have been shown to direct region-specific development of the animal body plan. We examined in transgenic mice the DNA regulatory elements that determine the temporal and spatially restricted expression of two of the earliest and most anteriorly expressed murine genes, Hoxa-1 and Hoxa-2, which are homologues of the labial and proboscipedia genes of Drosophila. In both mouse and Drosophila, these genes have been shown to play a critical role in head development. We identified three independent enhancers which direct distinct portions of the Hoxa-1 and Hoxa-2 expression domains during early murine embryogenesis. Two enhancers mediate hindbrain-specific expression, being active in either rhombomere 2, the most anterior rhombomere expressing Hoxa-2, or in rhombomere 4, a region where Hoxa-1 and Hoxa-2 have been shown to exert critical developmental roles. The third enhancer is essential for the most extensive expression domain of Hoxa-1 and contains a retinoic acid response element. Point mutations within the retinoic acid response element abolish expression in neuroepithelium caudal to rhombomere 4, supporting a natural role for endogenous retinoids in patterning of the hindbrain and spinal cord. Analysis of the murine Hoxa-2 rhombomere 2-specific enhancer in Drosophila embryos revealed a distinct expression domain within the arthropod head segments, which parallels the expression domain of the Hoxa-2 homologue proboscipedia. These results suggest an evolutionary conservation between HOM-C/Hox family members, which includes a conservation of certain DNA regulatory elements and possible regulatory cascades.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Maksim Erokhin ◽  
Fedor Gorbenko ◽  
Dmitry Lomaev ◽  
Marina Yu Mazina ◽  
Anna Mikhailova ◽  
...  

Abstract Background Epigenetic memory plays a critical role in the establishment and maintenance of cell identities in multicellular organisms. Polycomb and trithorax group (PcG and TrxG) proteins are responsible for epigenetic memory, and in flies, they are recruited to specialized DNA regulatory elements termed polycomb response elements (PREs). Previous transgene studies have shown that PREs can silence reporter genes outside of their normal context, often by pairing sensitive (PSS) mechanism; however, their silencing activity is non-autonomous and depends upon the surrounding chromatin context. It is not known why PRE activity depends on the local environment or what outside factors can induce silencing. Results Using an attP system in Drosophila, we find that the so-called neutral chromatin environments vary substantially in their ability to support the silencing activity of the well-characterized bxdPRE. In refractory chromosomal contexts, factors required for PcG-silencing are unable to gain access to the PRE. Silencing activity can be rescued by linking the bxdPRE to a boundary element (insulator). When placed next to the PRE, the boundaries induce an alteration in chromatin structure enabling factors critical for PcG silencing to gain access to the bxdPRE. When placed at a distance from the bxdPRE, boundaries induce PSS by bringing the bxdPREs on each homolog in close proximity. Conclusion This proof-of-concept study demonstrates that the repressing activity of PREs can be induced or enhanced by nearby boundary elements. Graphical abstract


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Satoru Ide ◽  
Asuka Sasaki ◽  
Yusuke Kawamoto ◽  
Toshikazu Bando ◽  
Hiroshi Sugiyama ◽  
...  

Abstract Background Knowing chromatin components at a DNA regulatory element at any given time is essential for understanding how the element works during cellular proliferation, differentiation and development. A region-specific chromatin purification is an invaluable approach to dissecting the comprehensive chromatin composition at a particular region. Several methods (e.g., PICh, enChIP, CAPTURE and CLASP) have been developed for isolating and analyzing chromatin components. However, all of them have some shortcomings in identifying non-coding RNA associated with DNA regulatory elements. Results We have developed a new approach for affinity purification of specific chromatin segments employing an N-methyl pyrrole (P)-N-methylimidazole (I) (PI) polyamide probe, which binds to a specific sequence in double-stranded DNA via Watson–Crick base pairing as a minor groove binder. This new technique is called proteomics and RNA-omics of isolated chromatin segments (PI-PRICh). Using PI-PRICh to isolate mouse and human telomeric components, we found enrichments of shelterin proteins, the well-known telomerase RNA component (TERC) and telomeric repeat-containing RNA (TERRA). When PI-PRICh was performed for alternative lengthening of telomere (ALT) cells with highly recombinogenic telomeres, in addition to the conventional telomeric chromatin, we obtained chromatin regions containing telomeric repeat insertions scattered in the genome and their associated RNAs. Conclusion PI-PRICh reproducibly identified both the protein and RNA components of telomeric chromatin when targeting telomere repeats. PI polyamide is a promising alternative to simultaneously isolate associated proteins and RNAs of sequence-specific chromatin regions under native conditions, allowing better understanding of chromatin organization and functions within the cell.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


Genetics ◽  
2020 ◽  
Vol 217 (1) ◽  
Author(s):  
Jaclyn M Noshay ◽  
Alexandre P Marand ◽  
Sarah N Anderson ◽  
Peng Zhou ◽  
Maria Katherine Mejia Guerra ◽  
...  

Abstract Transposable elements (TEs) have the potential to create regulatory variation both through the disruption of existing DNA regulatory elements and through the creation of novel DNA regulatory elements. In a species with a large genome, such as maize, many TEs interspersed with genes create opportunities for significant allelic variation due to TE presence/absence polymorphisms among individuals. We used information on putative regulatory elements in combination with knowledge about TE polymorphisms in maize to identify TE insertions that interrupt existing accessible chromatin regions (ACRs) in B73 as well as examples of polymorphic TEs that contain ACRs among four inbred lines of maize including B73, Mo17, W22, and PH207. The TE insertions in three other assembled maize genomes (Mo17, W22, or PH207) that interrupt ACRs that are present in the B73 genome can trigger changes to the chromatin, suggesting the potential for both genetic and epigenetic influences of these insertions. Nearly 20% of the ACRs located over 2 kb from the nearest gene are located within an annotated TE. These are regions of unmethylated DNA that show evidence for functional importance similar to ACRs that are not present within TEs. Using a large panel of maize genotypes, we tested if there is an association between the presence of TE insertions that interrupt, or carry, an ACR and the expression of nearby genes. While most TE polymorphisms are not associated with expression for nearby genes, the TEs that carry ACRs exhibit enrichment for being associated with higher expression of nearby genes, suggesting that these TEs may contribute novel regulatory elements. These analyses highlight the potential for a subset of TEs to rewire transcriptional responses in eukaryotic genomes.


Author(s):  
Le Wang ◽  
Fei Sun ◽  
Zi Yi Wan ◽  
Baoqing Ye ◽  
Yanfei Wen ◽  
...  

Abstract Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole genome sequencing, QTL mapping, genome-wide association studies and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double tail mutant was suggested to be caused by a deletion in a zic1/zic4 co-enhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.


1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrew R Bassett ◽  
Asifa Akhtar ◽  
Denise P Barlow ◽  
Adrian P Bird ◽  
Neil Brockdorff ◽  
...  

Although a small number of the vast array of animal long non-coding RNAs (lncRNAs) have known effects on cellular processes examined in vitro, the extent of their contributions to normal cell processes throughout development, differentiation and disease for the most part remains less clear. Phenotypes arising from deletion of an entire genomic locus cannot be unequivocally attributed either to the loss of the lncRNA per se or to the associated loss of other overlapping DNA regulatory elements. The distinction between cis- or trans-effects is also often problematic. We discuss the advantages and challenges associated with the current techniques for studying the in vivo function of lncRNAs in the light of different models of lncRNA molecular mechanism, and reflect on the design of experiments to mutate lncRNA loci. These considerations should assist in the further investigation of these transcriptional products of the genome.


Sign in / Sign up

Export Citation Format

Share Document